Analytical Model on Lithiation-Induced Interfacial Debonding of an Active Layer From a Rigid Substrate

2016 ◽  
Vol 83 (12) ◽  
Author(s):  
Bo Lu ◽  
Yanfei Zhao ◽  
Yicheng Song ◽  
Junqian Zhang

By directly solving the prescribed differential equations, an analytical method based on the cohesive model has been developed to investigate the interfacial debonding process induced by lithiation in an axisymmetric thin film electrode where an elastic active layer is bonded on a rigid substrate. The assumption of rigid substrate has been proved acceptable for high-modulus substrates such as copper and aluminum which are common materials for current collectors in lithium-ion batteries. For the case where the weak interface is assumed and the radial concentration gradient is neglected, an extremely simplified solution has been obtained. The simplified solution which has acceptable accuracy provides a good guidance for understanding and predicting the interfacial debonding.

2019 ◽  
Vol 86 (10) ◽  
Author(s):  
Bo Lu ◽  
Chengqiang Ning ◽  
Yanfei Zhao ◽  
Yicheng Song ◽  
Junqian Zhang

To determine the impact of cohesive law shapes on the modeling of interfacial debonding in lithium-ion battery electrodes, analytical methods based on different cohesive models for the debonding process have been developed individually. Three different cohesive laws, namely, triangular, trapezoidal, and rectangular laws, have been employed. To ensure comparability, the cohesive strength and the fracture toughness have been set to be identical for different cohesive laws. The evaluation of debonding onset has suggested that the cohesive law shape affects the modeling results only when the interface is ductile. The largest possible difference for the triangular law and the rectangular law on the debonding onset has been estimated. A discussion for specific electrodes has also been provided.


Author(s):  
Roozbeh Pouyanmehr ◽  
Morteza Pakseresht ◽  
Reza Ansari ◽  
Mohammad Kazem Hassanzadeh-Aghdam

One of the limiting factors in the life of lithium-ion batteries is the diffusion-induced stresses on their electrodes that cause cracking and consequently, failure. Therefore, improving the structure of these electrodes to be able to withstand these stresses is one of the ways that can extend the life of the batteries as well as improve their safety. In this study, the effects of adding graphene nanoplatelets and microparticles into the active plate and current collectors, respectively, on the diffusion induced stresses in both layered and bilayered electrodes are numerically investigated. The micromechanical models are employed to predict the mechanical properties of both graphene nanoplatelet-reinforced Sn-based nanocomposite active plate and silica microparticle-reinforced copper composite current collector. The effect of particle size and volume fraction in the current collector on diffusion induced stresses has been studied. The results show that in electrodes with a higher volume fraction of particles and smaller particle radii, decreased diffusion induced stresses in both the active plate and the current collector are observed. These additions will also result in a significant decrease in the bending of the electrode.


2018 ◽  
Vol 20 ◽  
pp. 213-217 ◽  
Author(s):  
Abdilbari Shifa Mussa ◽  
Göran Lindbergh ◽  
Matilda Klett ◽  
Peter Gudmundson ◽  
Pontus Svens ◽  
...  

Electrochem ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 124-159 ◽  
Author(s):  
Mitsuru Yamada ◽  
Tatsuya Watanabe ◽  
Takao Gunji ◽  
Jianfei Wu ◽  
Futoshi Matsumoto

Current collectors (CCs) are an important and indispensable constituent of lithium-ion batteries (LIBs) and other batteries. CCs serve a vital bridge function in supporting active materials such as cathode and anode materials, binders, and conductive additives, as well as electrochemically connecting the overall structure of anodes and cathodes with an external circuit. Recently, various factors of CCs such as the thickness, hardness, compositions, coating layers, and structures have been modified to improve aspects of battery performance such as the charge/discharge cyclability, energy density, and the rate performance of a cell. In this paper, the details of interesting and useful attempts of preparing CCs for high battery performance in lithium-ion and post-lithium-ion batteries are reviewed. The advantages and disadvantages of these attempts are discussed.


Batteries ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 21 ◽  
Author(s):  
Huajun Feng ◽  
Yuan Chen ◽  
Yihua Wang

In this work, we use ultrasonication and chemical etching agents to assist preparation of metal current collectors with nano-scale pores on the surface. Four different current collectors (copper foil, copper foam, aluminum foil, and aluminum foam) are prepared. The preparation parameters, ultrasonic time and etching agent concentration, are investigated and optimized accordingly. The morphologies of the as-prepared current collectors are observed under a scanning electronic microscope. Soft-packed lithium ion batteries with various current collectors are fabricated and tested. The prepared lithium ion batteries show good long-term cycle stability. The nanoporous structure of the current collector has little impact on the improvement of battery capacity under slow charging/discharging rates but has a positive impact on capacity retention under fast charging/discharging rates.


Sign in / Sign up

Export Citation Format

Share Document