Dynamic Analysis and Wear Prediction of Planar Five-Bar Mechanism Considering Multiflexible Links and Multiclearance Joints

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Gengxiang Wang ◽  
Hongzhao Liu

Effects of wear and member flexibility on the dynamic performance of a planar five-bar mechanism with joint-clearance are investigated. The equation of motion of the mechanism is derived based on the absolute nodal coordinate formulation (ANCF). In order to enhance the accuracy of the contact force, the slope of the load–displacement curve of the cylindrical joint with clearance is used. The contact deformation couples the joint wear to the contact state. The contact force model of Flores and coworkers is improved, by the introduction of the stiffness coefficient. The wear depth is predicted by using the Archard's wear model. Simulations show that the multiclearance joints can generate stronger contact forces relative to single clearance joint case. This leads to more severe wear in the joint. However, the mechanism with multiple flexible links can absorb more of the energy arising from the clearance joint, and this improves the wear phenomenon.

Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


Author(s):  
Zhengfeng Bai ◽  
Jijun Zhao ◽  
Xin Shi

Abstract Modern spacecraft usually has large deployment structure, which consisting of plenty of joints could produce undesirable dynamic responses when considering clearances in joints and driving input fluctuation. However, in the dynamic performance analysis of space deployment mechanism, the clearances and input fluctuation are always ignored. In this study, the dynamic responses of a flexible planar scissor-like truss deployment mechanism with imperfect joint considering clearance and input fluctuation are investigated using computational methodology. First, the mathematic model of clearance joint is established. The revolute clearance joint is considered as force constraint and the joint components of an imperfect joint with clearance are modeled as contact bodies. The normal contact force model of clearance joint is established using a continuous contact force model considering energy loss. The friction effect is considered using a modified Coulomb friction model. Then, the dynamics performances of the flexible planar scissor-like truss deployment mechanism with imperfect joint considering clearance and input fluctuation are presented and discussed. Different case studies for the scissor-like truss deployment mechanism with clearance are investigated considering driving input fluctuation. The simulation results show that the dynamic characteristics of the mechanism with clearance joint are changed more obviously when considering driving input fluctuation. Therefore, investigation implies that dynamics responses of the truss deployment mechanism are much worse when considering clearance joint and input fluctuation, which indicates that driving input fluctuation leads to more obvious degradation of the dynamic performance of the truss deployment mechanism with imperfect joint.


2006 ◽  
Vol 1 (3) ◽  
pp. 240-247 ◽  
Author(s):  
P. Flores ◽  
J. Ambrósio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, with the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four-bar mechanism is used as an illustrative example and some numerical results are presented, with the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Gengxiang Wang ◽  
Hongzhao Liu ◽  
Peisheng Deng ◽  
Kaiming Yin ◽  
Guanggang Zhang

The dynamic performance of 4-SPS/CU (spherical joint, prismatic joint, cylindrical joint, and universal joint) parallel mechanism considering spherical joint with clearance is developed, and the three-dimensional (3D) wear property of the socket is based on the Archard's wear model. First, the kinematics model of spherical joint with clearance is established, and the updated procedure pertaining to the contact mechanics and wear state is explained via a flowchart. An improved contact force model was proposed by Flores et al. contact force model through a revised contact stiffness coefficient. The normal and tangential contact forces between ball and socket are calculated using the improved contact force model and a modified Coulomb friction model. Second, the dynamic model of the parallel mechanism considering spherical joint with clearance is formulated based on the multibody equations of motion. In order to obtain the 3D wear property of spherical joint with clearance, the contact force is decomposed into three components in the global coordinate system. The three components of sliding distance are computed based on the 3D revolute property of the parallel mechanism. Finally, the contact pressures in three different directions are calculated by the corresponding contact force and approximate contact area components for the sake of predicting the 3D wear depth of socket based on the Archard's wear model. The simulation results show that the wear depth in different directions along the socket surface is nonuniform, which affects the performance of 4-SPS/CU parallel mechanism.


Author(s):  
Zhenhua Zhang ◽  
Liang Xu ◽  
Paulo Flores ◽  
Hamid M. Lankarani

Over the last two decades, extensive work has been conducted on dynamic effect of joint clearances in multibody mechanical systems. In contrast, little work has been devoted to optimizing the performance of these systems. In this study, analysis of revolute joint clearance is formulated in term of a Hertzian-based contact force model. For illustration, the classical slider-crank mechanism with a revolute clearance joint at the piston pin is presented, and a simulation model is developed using the analysis/design code MSC.ADAMS. The clearance is modeled as a pin-in-a-hole surface-to-surface dry contact, with appropriate contact force model between the joint and bearing surfaces. Different simulations are performed to demonstrate the influence of the joint clearance size and the input crank speed on the dynamic behavior of the system with the clearance joint. An innovative design-of-experiment (DOE)-based method for optimizing the performance of a mechanical system with the revolute joint clearance for different ranges of design parameters is then proposed. Based on the simulation model results from sample points, which are selected by a Latin hypercube sampling (LHS) method, a polynomial function Kriging meta-model is established instead of the actual simulation model. The reason for development and use of the meta-model is to bypass computationally intensive simulations of a computer model for different design parameter values in place of a more efficient and cost-effective mathematical model. Finally, numerical results obtained from two application examples, considering the different design parameters, including the joint clearance size, crank speed, and contact stiffness, are presented for further analyzing the dynamics of the revolute clearance joint in a mechanical system. This allows for predicting the influence of design parameter changes, in order to minimize contact forces, accelerations, and power requirements due to the existence of joint clearance.


Author(s):  
Zhenhua Zhang ◽  
Liang Xu ◽  
Paulo Flores ◽  
Hamid M. Lankarani

Over the past two decades, extensive work has been conducted on the dynamic effect of joint clearances in multibody mechanical systems. In contrast, little work has been devoted to optimizing the performance of these systems. In this study, the analysis of revolute joint clearance is formulated in terms of a Hertzian-based contact force model. For illustration, the classical slider-crank mechanism with a revolute clearance joint at the piston pin is presented and a simulation model is developed using the analysis/design software MSC.ADAMS. The clearance is modeled as a pin-in-a-hole surface-to-surface dry contact, with an appropriate contact force model between the joint and bearing surfaces. Different simulations are performed to demonstrate the influence of the joint clearance size and the input crank speed on the dynamic behavior of the system with the joint clearance. In the modeling and simulation of the experimental setup and in the followed parametric study with a slightly revised system, both the Hertzian normal contact force model and a Coulomb-type friction force model were utilized. The kinetic coefficient of friction was chosen as constant throughout the study. An innovative design-of-experiment (DOE)-based method for optimizing the performance of a mechanical system with the revolute joint clearance for different ranges of design parameters is then proposed. Based on the simulation model results from sample points, which are selected by a Latin hypercube sampling (LHS) method, a polynomial function Kriging meta-model is established instead of the actual simulation model. The reason for the development and use of the meta-model is to bypass computationally intensive simulations of a computer model for different design parameter values in place of a more efficient and cost-effective mathematical model. Finally, numerical results obtained from two application examples with different design parameters, including the joint clearance size, crank speed, and contact stiffness, are presented for the further analysis of the dynamics of the revolute clearance joint in a mechanical system. This allows for predicting the influence of design parameter changes, in order to minimize contact forces, accelerations, and power requirements due to the existence of joint clearance.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Gengxiang Wang ◽  
Hongzhao Liu ◽  
Peisheng Deng

The influence of the spherical joint with clearance caused by wear on the dynamics performance of spatial multibody system is predicted based on the Archard's wear model and equations of motion of multibody systems. First, the function of contact deformation and load acting on the spherical joint with clearance is derived based on the improved Winkler elastic foundation model and Hertz quadratic pressure distribution assumption. On this basis, considering the influence of clearance size and wear state on the contact stiffness between spherical joint elements, an improved contact force model is proposed by Lankarani–Nikravesh contact force model and improved stiffness coefficient that is the slope of the function of contact deformation and load. Second, due to the complexity for that wear impacts on the surface topography of contact bodies, an approximate calculation method of contact area with respect to the clearance spherical joint is provided for simplifying the computational process of contact pressure in the Archard's wear model. Subsequently, the contact pressure between contact bodies is calculated by the improved contact force model and approximate contact area (ICFM–ACA), which is verified via finite element method (FEM). Moreover, the dynamics model of spatial four bar mechanism considering spherical joint with clearance caused by wear is formulated using equations of motion of multibody systems. Finally, the wear depth of spherical joint with clearance is predicted via two different kinds of contact pressure based on the Archard's wear model (one is from the ICFM–ACA and the other is from FEM), respectively. The numerical simulation results show that the improved contact force model and proposed approximate contact area are correctness and validity for predicting wear in the spherical joint with clearance. Simultaneously, the effect of the spherical joint with clearance caused by wear on the dynamics performance of spatial four bar mechanism is analyzed.


Author(s):  
Bo Li ◽  
San-Min Wang ◽  
Ru Yuan ◽  
Xiang-Zhen Xue ◽  
Chang-Jian Zhi

This paper aims at investigating precisely the dynamic performance of deployable structure constituted by scissor unit mechanisms with clearance joint. Based on the motion law in real joints, the contact model is established using an improved Gonthier nonlinear continuous contact force model, and the friction effect is considered using LuGre model. Moreover, the resulting contact force is suitable to be included into the generalized force of the equations of motion of a multibody system and contributes to replace motion constraints. In the sequel of this process, the effect of joint clearance is successfully introduced into the dynamical model of scissor deployable structure and the dynamic characteristics of deployable structure with joint clearance are obtained using a direct default correction method, which can directly modify the coordinates and speed of the system to avoid the numerical results divergence. Also, the new hybrid contact force model of revolute joint clearance is verified through comparing with the original model. The numerical simulation results show that the improved contact model proposed here has the great merit that predicts the dynamic behavior of scissor deployable structure with joint clearance.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Yunkai Gao ◽  
Yuexing Duan ◽  
James Yang ◽  
Zhe Yuan ◽  
Chao Ma

Abstract In mechanisms, the guide and roller form joints with clearance and the roller may make contact with the convex surface or concave surface of the guide. Correctly modeling this type of joint is critical in a mechanism's dynamic performance analysis. This paper proposes a contact kinematic model and a hybrid contact force model for the planar joint and investigates both the convex and concave contact cases. The contact kinematic model is derived from the relative motion between the guide and roller and the hybrid contact force model consists of an elastic force and a damping force. The sliding door mechanism is used as an illustrative example to demonstrate the proposed models. Experimental data are collected for a vehicle's sliding door mechanism. Results show that the proposed models are effective and the simulation results match the general trend of experimental data based on RMS errors.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Gengxiang Wang ◽  
Hongzhao Liu

Effects of flexible body and clearance spherical joint on the dynamic performance of 4-SPS/CU parallel mechanism are analyzed. The flexible moving platform is treated as thin plate based on absolute nodal coordinate formulation (ANCF). In order to formulate the parallel mechanism's constraint equations between the flexible body and the rigid body, the tangent frame is introduced to define the joint coordinate. One of the spherical joints between moving platform and kinematic chains is introduced into clearance. The normal and tangential contact forces are calculated based on Flores contact force model and modified Coulomb friction model. The dynamics model of parallel mechanism with clearance spherical joint and flexible moving platform is formulated based on equation of motion. Simulations show that the dynamic performance of parallel mechanism is not sensitive to the flexible body because of the inherent property of moving platform; however, when the clearance spherical joint is considered into the parallel mechanism with flexible body, the flexible moving platform exhibits cushioning effect to absorb the energy caused by clearance joint.


Sign in / Sign up

Export Citation Format

Share Document