Modeling Planar Joints With Clearance Between the Guide and Roller in Mechanisms

2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Yunkai Gao ◽  
Yuexing Duan ◽  
James Yang ◽  
Zhe Yuan ◽  
Chao Ma

Abstract In mechanisms, the guide and roller form joints with clearance and the roller may make contact with the convex surface or concave surface of the guide. Correctly modeling this type of joint is critical in a mechanism's dynamic performance analysis. This paper proposes a contact kinematic model and a hybrid contact force model for the planar joint and investigates both the convex and concave contact cases. The contact kinematic model is derived from the relative motion between the guide and roller and the hybrid contact force model consists of an elastic force and a damping force. The sliding door mechanism is used as an illustrative example to demonstrate the proposed models. Experimental data are collected for a vehicle's sliding door mechanism. Results show that the proposed models are effective and the simulation results match the general trend of experimental data based on RMS errors.


Author(s):  
Zhengfeng Bai ◽  
Jijun Zhao ◽  
Xin Shi

Abstract Modern spacecraft usually has large deployment structure, which consisting of plenty of joints could produce undesirable dynamic responses when considering clearances in joints and driving input fluctuation. However, in the dynamic performance analysis of space deployment mechanism, the clearances and input fluctuation are always ignored. In this study, the dynamic responses of a flexible planar scissor-like truss deployment mechanism with imperfect joint considering clearance and input fluctuation are investigated using computational methodology. First, the mathematic model of clearance joint is established. The revolute clearance joint is considered as force constraint and the joint components of an imperfect joint with clearance are modeled as contact bodies. The normal contact force model of clearance joint is established using a continuous contact force model considering energy loss. The friction effect is considered using a modified Coulomb friction model. Then, the dynamics performances of the flexible planar scissor-like truss deployment mechanism with imperfect joint considering clearance and input fluctuation are presented and discussed. Different case studies for the scissor-like truss deployment mechanism with clearance are investigated considering driving input fluctuation. The simulation results show that the dynamic characteristics of the mechanism with clearance joint are changed more obviously when considering driving input fluctuation. Therefore, investigation implies that dynamics responses of the truss deployment mechanism are much worse when considering clearance joint and input fluctuation, which indicates that driving input fluctuation leads to more obvious degradation of the dynamic performance of the truss deployment mechanism with imperfect joint.



2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Gengxiang Wang ◽  
Hongzhao Liu

Effects of wear and member flexibility on the dynamic performance of a planar five-bar mechanism with joint-clearance are investigated. The equation of motion of the mechanism is derived based on the absolute nodal coordinate formulation (ANCF). In order to enhance the accuracy of the contact force, the slope of the load–displacement curve of the cylindrical joint with clearance is used. The contact deformation couples the joint wear to the contact state. The contact force model of Flores and coworkers is improved, by the introduction of the stiffness coefficient. The wear depth is predicted by using the Archard's wear model. Simulations show that the multiclearance joints can generate stronger contact forces relative to single clearance joint case. This leads to more severe wear in the joint. However, the mechanism with multiple flexible links can absorb more of the energy arising from the clearance joint, and this improves the wear phenomenon.



2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769047
Author(s):  
Yuntao Li ◽  
Qiquan Quan ◽  
Dewei Tang ◽  
Zhonghong Li ◽  
Zongquan Deng

Both the process of eliminating the clearance in joints and the contact–impact process involve movement of a clearance mechanism, which may reduce transmission accuracy and lengthen the response time. An appropriate continuous contact force model is able to describe the contact phenomena of a joint with clearance in a facile manner. However, two main problems still should be solved in building the continuous contact force model. First, the elastic force parts in previous continuous contact force models for a revolute joint were established by amending the force exponent of the Hertz spherical contact model or by the modified Winkler contact model. Nevertheless, the force exponent is usually given by experience, and the thickness of the elastic layer in the Winkler theory is difficult to determine. Second, for the previous damping force parts of a revolute joint, the hysteretic damping coefficients were obtained by substituting the stiffness coefficient with the contact stiffness of revolute joint directly instead of using the energy conservation method for the complicated form of elastic force model. A feasible continuous contact force model based on a fitting method was proposed to avoid these problems. According to the experimental results, the continuous contact force model can be used to predict the contact characteristics of a planar revolute joint in a facile manner.



Author(s):  
Bo Li ◽  
San-Min Wang ◽  
Ru Yuan ◽  
Xiang-Zhen Xue ◽  
Chang-Jian Zhi

This paper aims at investigating precisely the dynamic performance of deployable structure constituted by scissor unit mechanisms with clearance joint. Based on the motion law in real joints, the contact model is established using an improved Gonthier nonlinear continuous contact force model, and the friction effect is considered using LuGre model. Moreover, the resulting contact force is suitable to be included into the generalized force of the equations of motion of a multibody system and contributes to replace motion constraints. In the sequel of this process, the effect of joint clearance is successfully introduced into the dynamical model of scissor deployable structure and the dynamic characteristics of deployable structure with joint clearance are obtained using a direct default correction method, which can directly modify the coordinates and speed of the system to avoid the numerical results divergence. Also, the new hybrid contact force model of revolute joint clearance is verified through comparing with the original model. The numerical simulation results show that the improved contact model proposed here has the great merit that predicts the dynamic behavior of scissor deployable structure with joint clearance.



2012 ◽  
Vol 160 ◽  
pp. 351-355
Author(s):  
Zheng Ying ◽  
Ying Lin Ke

The dynamic performance of alignment mechanism of large aircraft component is directly associated with the structure and clearance of spherical joints. To accurately evaluate this influence, kinematic and dynamic models of spherical joints are developed. Firstly, a kinematic model of spherical joints is established. Secondly, a dynamic model of spherical joints is derived from the kinematic model and continuous contact force model. Finally, simulations of alignment mechanism of large aircraft component are carried out for typical moving trajectories. The influences of moving trajectory on the dynamic performance of mechanism are analysed. The simulation results are also applicable to similar mechanism design, moving trajectory planning and kinematic joint wear forecasting.



Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.



Author(s):  
Hamid M. Lankarani ◽  
Parviz E. Nikravesh

Abstract A continuous analysis method for the direct-central impact of two solid particles is presented. Based on the assumption that local plasticity effects are the sole factor accounting for the dissipation of energy in impact, a Hertzian contact force model with permanent indentation is constructed. Utilizing energy and momentum considerations, the unknown parameters in the model are analytically evaluated in terms of a given coefficient of restitution and velocities before impact. The equations of motion of the two solids may then be integrated forward in time knowing the variation of the contact force during the contact period. For Illustration, an impact of two soft metallic particles is studied.



Author(s):  
Willem Petersen ◽  
John McPhee

For the multibody simulation of planetary rover operations, a wheel-soil contact model is necessary to represent the forces and moments between the tire and the soft soil. A novel nonlinear contact modelling approach based on the properties of the hypervolume of interpenetration is validated in this paper. This normal contact force model is based on the Winkler foundation model with nonlinear spring properties. To fully define the proposed normal contact force model for this application, seven parameters are required. Besides the geometry parameters that can be easily measured, three soil parameters representing the hyperelastic and plastic properties of the soil have to be identified. Since it is very difficult to directly measure the latter set of soil parameters, they are identified by comparing computer simulations with experimental results of drawbar pull tests performed under different slip conditions on the Juno rover of the Canadian Space Agency (CSA). A multibody dynamics model of the Juno rover including the new wheel/soil interaction model was developed and simulated in MapleSim. To identify the wheel/soil contact model parameters, the cost function of the model residuals of the kinematic data is minimized. The volumetric contact model is then tested by using the identified contact model parameters in a forward dynamics simulation of the rover on an irregular 3-dimensional terrain and compared against experiments.



2022 ◽  
Vol 168 ◽  
pp. 108739
Author(s):  
Jie Zhang ◽  
Xu Liang ◽  
Zhonghai Zhang ◽  
Guanhua Feng ◽  
Quanliang Zhao ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document