Large-Scale Detached-Eddy Simulation Analysis of Stall Inception Process in a Multistage Axial Flow Compressor

2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Kazutoyo Yamada ◽  
Masato Furukawa ◽  
Yuki Tamura ◽  
Seishiro Saito ◽  
Akinori Matsuoka ◽  
...  

This paper describes the flow mechanisms of rotating stall inception in a multistage axial flow compressor of an actual gas turbine. Large-scale numerical simulations of the unsteady have been conducted. The compressor investigated is a test rig compressor that was used in the development of the Kawasaki L30A industrial gas turbine. While the compressor consists of a total of 14 stages, only the front stages of the compressor were analyzed in the present study. The test data show that the fifth or sixth stages of the machine are most likely the ones leading to stall. To model the precise flow physics leading to stall inception, the flow was modeled using a very dense computational mesh, with several million cells in each passage. A total of 2 × 109 cells were used for the first seven stages (3 × 108 cells in each stage). Since the mesh was still not fine enough for large-eddy simulation (LES), a detached-eddy simulation (DES) was used. Using DES, a flow field is calculated using LES except in the near-wall where the turbulent eddies are modeled by Reynolds-averaged Navier–Stokes. The computational resources required for such large-scale simulations were still quite large, so the computations were conducted on the K computer (RIKEN AICS in Japan). Unsteady flow phenomena at the stall inception were analyzed using data mining techniques such as vortex identification and limiting streamline drawing with line integral convolution (LIC) techniques. In the compressor studied, stall started from a separation on the hub side rather than the commonly observed leading-edge separation near the tip. The flow phenomenon first observed in the stalling process is the hub corner separation, which appears in a passage of the sixth stator when approaching the stall point. This hub corner separation grows with time, and eventually leads to a leading-edge separation on the hub side of the stator. Once the leading-edge separation occurs, it rapidly develops into a rotating stall, causing another leading-edge separation of the neighboring blade. Finally, the rotating stall spreads to the upstream and downstream blade rows due to its large blockage effect.

Author(s):  
Kazutoyo Yamada ◽  
Masato Furukawa ◽  
Yuki Tamura ◽  
Seishiro Saito ◽  
Akinori Matsuoka ◽  
...  

The paper describes the flow mechanism of the rotating stall inception in a multi-stage axial flow compressor for an actual gas turbine. Large-scale numerical simulations have been conducted. The compressor investigated is a test rig compressor which was used for development of the industrial gas turbine, Kawasaki L30A. While the compressor consists of 14 stages, the front half stages of the compressor were analyzed in the present study. According to the test data, it is considered that the 5th or 6th stage is the one most suspected of leading to the stall. In order to capture precise flow physics that could happen at stall inception, a computational mesh was made dense, giving at least several million cells to each passage. It amounted to about two billion cells for the first 7 stages (three hundred million cells in each stage). Since the mesh was still not enough for the large-eddy simulation (LES), the detached-eddy simulation (DES) was employed. In the DES, a flow field is calculated by LES except near-wall and near-wall turbulent eddies are modeled by RANS. The computational resource required for such large-scale simulation was still quite large, so the computations were conducted on the K computer (RIKEN AICS in Japan). Unsteady flow phenomena at the stall inception were analyzed by using data mining techniques such as vortex identification and limiting streamline drawing with the LIC (line integral convolution) method. The present compressor has stall started from the separation on the hub side instead of the commonly observed leading-edge separation near the tip. The flow phenomenon first observed in the stalling process is the hub corner separation, which appears in some passage of the 6th stator when approaching the stall point. This hub corner separation expands with time, and eventually leads to the leading-edge separation on the hub side for the stator. Once the leading-edge separation happens, it rapidly develops into the rotating stall, causing another leading-edge separation for the neighboring blade in sequence. Finally, the rotating stall spreads to the upstream and downstream bladerows due to its large blockage effect.


Author(s):  
Hong-Sik Im ◽  
Xiangying Chen ◽  
Ge-Cheng Zha

This paper uses the advanced Delayed-Detached Eddy Simulation (DDES) of turbulence to simulate rotating stall inception of NASA Rotor 67. The rotor is a low-aspect-ratio transonic axial-flow fan with a tip speed of 429 m/s and a pressure ratio of 1.63. A full annulus simulation was employed with the time accurate compressible Navier-Stokes code in order to accurately capture the the formation of long-length disturbance and a short-length inception (spike). The validation for all numerical methods used in this study was accomplished by the comparisons of the CFD solutions with the test data in advance of unsteady simulations. Self-induced rotating stall development is simulated holding the same back pressure at the near stall experiment without any throttling. Spike type rotating stall occurs and rotates at roughly 50% of rotor speed counter to the rotation. After spike onset, rotating stall fully develops approximately within 2 rotor revolutions. Two distinct characteristics that can advance the mechanism of spike type rotating stall are observed. First, the passage shock is fully detached from rotor and decays during the spike inception. Consequently the shifted sonic line at the upstream of rotor allows stalling flow to propagate to the neighboring passage. Second, the trailing edge back flow contributes to the build up of a fully developed stall cell by pushing tip clearance flow toward blade leading edge and inducing tip spillage flow. Tip vortex originated from the leading edge dies out during spike inception as the swirl angle of incoming tip flow decreases, while in the unstalled passages it develops without breakdown. DDES challenge for the complete blade row reflects well the sequence of rotating stall and its unsteady behavior.


Author(s):  
Wei Ma ◽  
Feng Gao ◽  
Xavier Ottavy ◽  
Lipeng Lu ◽  
A. J. Wang

Recently bimodal phenomenon in corner separation has been found by Ma et al. (Experiments in Fluids, 2013, doi:10.1007/s00348-013-1546-y). Through detailed and accurate experimental results of the velocity flow field in a linear compressor cascade, they discovered two aperiodic modes exist in the corner separation of the compressor cascade. This phenomenon reflects the flow in corner separation is high intermittent, and large-scale coherent structures corresponding to two modes exist in the flow field of corner separation. However the generation mechanism of the bimodal phenomenon in corner separation is still unclear and thus needs to be studied further. In order to obtain instantaneous flow field with different unsteadiness and thus to analyse the mechanisms of bimodal phenomenon in corner separation, in this paper detached-eddy simulation (DES) is used to simulate the flow field in the linear compressor cascade where bimodal phenomenon has been found in previous experiment. DES in this paper successfully captures the bimodal phenomenon in the linear compressor cascade found in experiment, including the locations of bimodal points and the development of bimodal points along a line that normal to the blade suction side. We infer that the bimodal phenomenon in the corner separation is induced by the strong interaction between the following two facts. The first is the unsteady upstream flow nearby the leading edge whose angle and magnitude fluctuate simultaneously and significantly. The second is the high unsteady separation in the corner region.


2009 ◽  
Vol 2009 (0) ◽  
pp. 377-378 ◽  
Author(s):  
Hiroaki KIKUTA ◽  
Masato FURUKAWA ◽  
Satoshi GUNJISHIMA ◽  
Kenichiro IWAKIRI ◽  
Takuro KAMEDA

1991 ◽  
Vol 113 (2) ◽  
pp. 281-287 ◽  
Author(s):  
M. Inoue ◽  
M. Kuroumaru ◽  
T. Iwamoto ◽  
Y. Ando

Statistical characteristics of pressure fluctuation on the casing wall of two axial flow compressor rotors have been investigated experimentally to find a precursor of rotating stall. Near stall, the casing wall pressure across a flow passage near the leading edge is characterized by a highly unsteady region where low-momentum fluid accumulates. The periodicity of the pressure fluctuation with blade spacing disappears and an alternative phenomenon comes into existence, which supports the disturbance propagating at a different speed from the rotor revolution. The precursor of rotating stall can be detected by monitoring collapse of the periodicity in the pressure fluctuation. To represent the periodicity qualitatively, a practical detection parameter has been proposed, which is easily obtained from signals of a single pressure sensor installed at an appropriate position on the casing wall during operation of a compressor.


Author(s):  
Hongwei Ma ◽  
Haokang Jiang

This paper presents an experimental study of the three-dimensional turbulent flow field in the tip region of an axial flow compressor rotor passage at a near stall condition. The investigation was conducted in a low-speed large-scale compressor using a 3-component Laser Doppler Velocimetry and a high frequency pressure transducer. The measurement results indicate that a tip leakage vortex is produced very close to the leading edge, and becomes the strongest at about 10% axial chord from the leading edge. Breakdown of the vortex periodically occurs at about 1/3 chord, causing very strong turbulence in the radial direction. Flow separation happens on the tip suction surface at about half chord, prompting the corner vortex migrating toward the pressure side. Tangential migration of the low-energy fluids results in substantial flow blockage and turbulence in the rear of a rotor passage. Unsteady interactions among the tip leakage vortex, the separated vortex and the corner flow should contribute to the inception of the rotating stall in a compressor.


2010 ◽  
Vol 2010.7 (0) ◽  
pp. 15-16
Author(s):  
Hiroaki KIKUTA ◽  
Masato FURUKAWA ◽  
Kenichiro IWAKIRI ◽  
Satoshi GUNJISHIMA ◽  
Goki OKADA ◽  
...  

2008 ◽  
Vol 130 (1) ◽  
Author(s):  
A. Deppe ◽  
H. Saathoff ◽  
U. Stark

The paper “Criteria for Spike Initiated Rotating Stall” by Vo et al. (2008, ASME J. Turbomach., 130, p. 011023) provides a very important contribution to the understanding of spike-type stall inception in axial-flow compressors by demonstrating that spike-type disturbances are directly linked to the tip leakage flow of the rotor. The computational study of Vo et al. leads to the conclusion that two conditions have to be fulfilled simultaneously for the formation of spike-type stall: (i) axial backflow at the leading edge plane and (ii) axial backflow at the trailing edge plane. The objective of the present technical brief is to support these findings by corresponding experimental results.


Author(s):  
Kazutoyo Yamada ◽  
Masato Furukawa ◽  
Satoshi Nakakido ◽  
Akinori Matsuoka ◽  
Kentaro Nakayama

The paper presents the results of large-scale numerical simulations which were conducted for better understanding of unsteady flow phenomena in a multi-stage axial flow compressor at off-design condition. The compressor is a test rig compressor which was used for development of the industrial gas turbine, Kawasaki L30A. The compressor consists of 14 stages, the front two stages and the front half stages of which were investigated in the present study. The final goal of this study is to elucidate the flow mechanism of the rotating stall inception in the multi-stage axial compressor for actual gas turbines, and according to the test data it is considered that the 2nd stage and the 5th or 6th stage are suspected of leading to the stall. In order to capture precise flow physics in the compressor, a computational mesh for the simulation was generated to have at least several million cells per passage, which amounted to 650 million cells for the front 2-stage simulation and two billion cells for the front 7-stage simulation (about three hundred million cells for each stage). Since these were still not enough for the large-eddy simulation (LES), the detached-eddy simulation (DES) was employed, which can calculate flow fields except near-wall region by LES. The required computational resources were quite large for such simulations, so the computations were conducted on the K computer (RIKEN AICS in Japan). The simulations were well validated, showing good agreement with the measurement results obtained in the test. In the validation, the effect of the boundary condition for the casing wall was also investigated by comparing the results between the adiabatic boundary condition and the isothermal boundary condition. As for the unsteady effect, the wake/blade interaction was investigated in detail. In addition, unsteady flow phenomena in the present compressor at off-design condition were analyzed by using data mining techniques such as vortex identification and limiting streamline drawing with the LIC (line integral convolution) method. The simulation showed that they could be caused by the corner separation on the hub side.


Author(s):  
W. Tabakoff

Turbines and compressors operating in polluted atmosphere with solid particles are subjected to performance deterioration. This paper presents an investigation carried out on two-stage gas turbine with blunt leading edge blades and on a single-stage axial flow compressor to study the effects of particulates and erosion on performance deterioration.


Sign in / Sign up

Export Citation Format

Share Document