Sliding Mode Control of Vibration in Single-Degree-of-Freedom Fractional Oscillators

Author(s):  
Jian Yuan ◽  
Youan Zhang ◽  
Jingmao Liu ◽  
Bao Shi

This paper proposes sliding mode control of vibration in three types of single-degree-of-freedom (SDOF) fractional oscillators: the Kelvin–Voigt type, the modified Kelvin–Voigt type, and the Duffing type. The dynamical behaviors are all described by second-order differential equations involving fractional derivatives. By introducing state variables of physical significance, the differential equations of motion are transformed into noncommensurate fractional-order state equations. Fractional sliding mode surfaces are constructed and the stability of the sliding mode dynamics is proved by means of the diffusive representation and Lyapunov stability theory. Then, sliding mode control laws are designed for fractional oscillators, respectively, in cases where the bound of the external exciting force is known or unknown. Furthermore, sliding mode control laws for nonzero initialization case are designed. Finally, numerical simulations are carried out to validate the above control designs.


2012 ◽  
Vol 17 (11) ◽  
pp. 4455-4466 ◽  
Author(s):  
Mehdi Baradaran-nia ◽  
Ghasem Alizadeh ◽  
Sohrab Khanmohammadi ◽  
Bahman Farahmand Azar


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Youan Zhang ◽  
Jian Yuan ◽  
Jingmao Liu ◽  
Bao Shi

This paper addresses the Lyapunov functions and sliding mode control design for two degrees-of-freedom (2DOF) and multidegrees-of-freedom (MDOF) fractional oscillators. First, differential equations of motion for 2DOF fractional oscillators are established by adopting the fractional Kelvin–Voigt constitute relation for viscoelastic materials. Second, a Lyapunov function candidate for 2DOF fractional oscillators is suggested, which includes the potential energy stored in fractional derivatives. Third, the differential equations of motion for 2DOF fractional oscillators are transformed into noncommensurate fractional state equations with six dimensions by introducing state variables with physical significance. Sliding mode control design and adaptive sliding mode control design are proposed based on the noncommensurate fractional state equations. Furthermore, the above results are generalized to MDOF fractional oscillators. Finally, numerical simulations are carried out to validate the above control designs.





2008 ◽  
Vol 16 (4) ◽  
pp. 429-443 ◽  
Author(s):  
F. Nollet ◽  
T. Floquet ◽  
W. Perruquetti


Author(s):  
Mohammad Amin Saeedi ◽  
Reza Kazemi ◽  
Shahram Azadi

In this paper, in order to improve the roll stability of an articulated vehicle carrying a liquid, an active roll control system is utilized by employing two different control methods. First, a 16-degree-of-freedom non-linear dynamic model of an articulated vehicle is developed. Next, the dynamic interaction of the liquid cargo with the vehicle is investigated by integrating a quasi-dynamic liquid sloshing model with a tractor–semitrailer model. Initially, to improve the lateral dynamic stability of the vehicle, an active roll control system is developed using classical integral sliding-mode control. The active anti-roll bar is employed as an actuator to generate the roll moment. Next, in order to verify the classical sliding-mode control performance and to eliminate its chattering, the backstepping method and the sliding-mode control method are combined. Subsequently, backstepping sliding-mode control as a new robust control is implemented. Moreover, in order to prevent both yaw instability and jackknifing, an active steering control system is designed on the basis of a simplified three-degree-of-freedom dynamic model of an articulated vehicle carrying a liquid. In the introduced system, the yaw rate of the tractor, the lateral velocity of the tractor and the articulation angle are considered as the three state variables which are targeted in order to track their desired values. The simulation results show that the combined proposed roll control system is more successful in achieving target control and reducing the lateral load transfer ratio than is classical sliding-mode control. A more detailed investigation confirms that the designed active steering system improves both the lateral stability of the vehicle and its handling, in particular during a severe lane-change manoeuvre in which considerable instability occurs.



Sign in / Sign up

Export Citation Format

Share Document