scholarly journals A Composite Robust Fault-Tolerant Control Scheme for Limited-Thrust Spacecraft Rendezvous in Near-Circular Orbits

Author(s):  
Neng Wan ◽  
Weiran Yao ◽  
Mingming Shi

External perturbations and actuator faults are two practical and significant issues that deserve designers' considerations when synthesizing the controllers for spacecraft rendezvous. A composite robust fault-tolerant control (FTC) scheme that does not require the fault information is proposed in this paper for limited-thrust rendezvous in near-circular orbits. Within the control scheme, a reliable integral sliding mode (ISM) auxiliary controller and a modified guaranteed cost FTC are, respectively, developed to attenuate the external disturbances and to stabilize the nominal rendezvous system with actuator faults. Comparisons with previous works as well as a more practical and challenging simulation example are presented to verify the advantages of this composite control scheme.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1139 ◽  
Author(s):  
Ngoc Nguyen ◽  
Sung Hong

Fault-tolerant control has drawn attention in recent years owning to its reliability and safe flight during missions. In this article, an active fault-tolerant control method is proposed to control a quadcopter in the presence of actuator faults and disturbances. Firstly, the dynamics of the quadcopter are presented. Secondly, a robust adaptive sliding mode Thau observer is presented to estimate the time-varying magnitudes of actuator faults. Thirdly, a fault-tolerant control scheme based on sliding mode control and reconfiguration technique is designed to maintain the quadcopter at the desired position despite the presence of faults. Unlike previous studies, the proposed method aims to integrate the fault diagnosis and a fault-tolerant control scheme into a single unit with total loss of actuator. Simulation results illustrate the efficiency of the suggested algorithm.


2019 ◽  
Vol 16 (2) ◽  
pp. 172988141983243 ◽  
Author(s):  
Fatima Ejaz ◽  
Mirza Tariq Hamayun ◽  
Shariq Hussain ◽  
Salman Ijaz ◽  
Shunkun Yang ◽  
...  

In this article, an adaptive sliding mode control is used in the framework of fault tolerant control to mitigate the effects of actuator faults without requiring the actuator health information. Since unmanned aerial vehicles are being used in multiple fields such as military, surveillance, media, agriculture, communication and trading sector, therefore it is of vital importance to overcome the effects of actuator faults that can decline system performance and can even lead to some serious accidents. The proposed adaptive sliding mode control approach can handle actuator faults directly without requiring any faults information and adaptively adjusts controller gains to maintain acceptable level of performance. To validate the effectiveness of the proposed adaptive fault tolerant control scheme, it has been tested in simulations using non-linear Benchmark model of Octorotor system and its performance is compared with the optimal LQR control approach.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ban Wang ◽  
Peng Huang ◽  
Wei Zhang

This paper presents an active fault-tolerant control strategy for quadrotor helicopters to simultaneously accommodate sensor faults and external disturbances. Unlike most of the existing fault diagnosis and fault-tolerant control schemes for quadrotor helicopters, the proposed fault diagnosis scheme is able to estimate sensor faults while eliminating the effect of external disturbances. Moreover, the proposed fault-tolerant control scheme is capable to eliminate the adverse effect of external disturbances as well by designing a disturbance observer to effectively estimate the unknown external disturbances and integrating with the designed integral sliding-mode controller. In this case, the continuous operation of the quadrotor helicopter is ensured while avoiding the unexpected control chattering. In addition, the stability of the closed-loop system is theoretically proved. Finally, the effectiveness and advantages of the proposed scheme are validated and demonstrated through comparative numerical simulations of the quadrotor helicopter under different faulty and uncertain scenarios.


2021 ◽  
pp. 107754632098018
Author(s):  
Xuefeng Zhang ◽  
Wenkai Huang

This article proposes an integral sliding mode control scheme for a class of uncertain nonlinear singular fractional-order systems subject to actuator faults. The interval type-2 Takagi–Sugeno model is used to represent the singular fractional-order systems. First, a novel integral sliding surface is constructed. A sufficient condition is given in terms of linear matrix inequalities which guarantees the admissibility and the robustness of the singular fractional-order systems against actuator faults. Then, aiming at the fault information which is difficult to get in the practical application, an adaptive estimation of fault information is proposed to update the sliding mode controller. A sliding mode fault tolerant control law is designed to make the singular fractional-order systems reach the sliding surface in a finite time. At last, the applicability and effectiveness of the proposed method is illustrated by a numerical simulation example.


Author(s):  
Jun Zhou ◽  
Jing Chang ◽  
Zongyi Guo

The paper describes the design of a fault-tolerant control scheme for an uncertain model of a hypersonic reentry vehicle subject to actuator faults. In order to improve superior transient performances for state tracking, the proposed method relies on a back-stepping sliding mode controller combined with an adaptive disturbance observer and a reference vector generator. This structure allows for a faster response and reduces the overshoots compared to linear conventional disturbance observers based sliding mode controller. Robust stability and performance guarantees of the overall closed-loop system are obtained using Lyapunov theory. Finally, numerical simulations results illustrate the effectiveness of the proposed technique.


Author(s):  
Bingqian Li ◽  
Wenhan Dong ◽  
Xiaoshan Ma

In this paper, a backstepping fault-tolerant control based on sliding-mode observer is proposed for the unmanned thrust-vectoring aircraft (UTVA) control. First, the UTVA model with the uncertainty, control surface damage and actuator faults is described, which is divided into fast loop and slow loop. Next, the cascade observers including a high-order SMO and the discontinuous projection adaptive law are proposed to estimate the states with compensating the uncertainty and control surface damage, and the sliding-mode observer is designed to identify actuator faults and estimate fault parameters. Then, the backstepping fault-tolerant control combining the estimation of states and fault parameters is proposed to achieve the global fault-tolerant control, which compensates the uncertainty, control surface damage and actuator faults. Finally, simulation results are given to demonstrate the effectiveness for UTVA.


Sign in / Sign up

Export Citation Format

Share Document