Robust Resource Allocation for Calibration and Validation Tests

Author(s):  
Chenzhao Li ◽  
Sankaran Mahadevan

Model calibration and validation are two activities in system model development, and both of them make use of test data. Limited testing budget creates the challenge of test resource allocation, i.e., how to optimize the number of calibration and validation tests to be conducted. Test resource allocation is conducted before any actual test is performed, and therefore needs to use synthetic data. This paper develops a test resource allocation methodology to make the system response prediction “robust” to test outcome, i.e., insensitive to the variability in test outcome; therefore, consistent system response predictions can be achieved under different test outcomes. This paper analyzes the uncertainty sources in the generation of synthetic data regarding different test conditions, and concludes that the robustness objective can be achieved if the contribution of model parameter uncertainty in the synthetic data can be maximized. Global sensitivity analysis (Sobol’ index) is used to assess this contribution, and to formulate an optimization problem to achieve the desired consistent system response prediction. A simulated annealing algorithm is applied to solve this optimization problem. The proposed method is suitable either when only model calibration tests are considered or when both calibration and validation tests are considered. Two numerical examples are provided to demonstrate the proposed approach.

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Lingyun Lu ◽  
Tian Wang ◽  
Wei Ni ◽  
Kai Li ◽  
Bo Gao

This paper presents a suboptimal approach for resource allocation of massive MIMO-OFDMA systems for high-speed train (HST) applications. An optimization problem is formulated to alleviate the severe Doppler effect and maximize the energy efficiency (EE) of the system. We propose to decouple the problem between the allocations of antennas, subcarriers, and transmit powers and solve the problem by carrying out the allocations separately and iteratively in an alternating manner. Fast convergence can be achieved for the proposed approach within only several iterations. Simulation results show that the proposed algorithm is superior to existing techniques in terms of system EE and throughput in different system configurations of HST applications.


2004 ◽  
Vol 50 (7) ◽  
pp. 113-122 ◽  
Author(s):  
C Printemps ◽  
A Baudin ◽  
T Dormoy ◽  
M. Zug ◽  
P.A. Vanrolleghem

Better controlling and optimising the plant's processes has become a priority for WWTP (Wastewater Treatment Plant) managers. The main objective of this project is to develop a simplified mathematical tool able to reproduce and anticipate the behaviour of the Tougas WWTP (Nantes, France). This tool is aimed to be used directly by the managers of the site. The mathematical WWTP model was created using the software WEST®. This paper describes the studied site and the modelling results obtained during the stage of the model calibration and validation. The good simulation results have allowed to show that despite a first very simple description of the WWTP, the model was able to correctly predict the nitrogen composition (ammonia and nitrate) of the effluent and the daily sludge extraction. Then, a second more detailed configuration of the WWTP was implemented. It has allowed to independently study the behaviour of each of four biological trains. Once this first stage will be completely achieved, the remainder of the study will focus on the operational use of a simplified simulator with the purpose of optimising the Tougas WWTP operation.


2021 ◽  
pp. 08-25
Author(s):  
Mustafa El .. ◽  
◽  
◽  
Aaras Y Y.Kraidi

The crowd-creation space is a manifestation of the development of innovation theory to a certain stage. With the creation of the crowd-creation space, the problem of optimizing the resource allocation of the crowd-creation space has become a research hotspot. The emergence of cloud computing provides a new idea for solving the problem of resource allocation. Common cloud computing resource allocation algorithms include genetic algorithms, simulated annealing algorithms, and ant colony algorithms. These algorithms have their obvious shortcomings, which are not conducive to solving the problem of optimal resource allocation for crowd-creation space computing. Based on this, this paper proposes an In the cloud computing environment, the algorithm for optimizing resource allocation for crowd-creation space computing adopts a combination of genetic algorithm and ant colony algorithm and optimizes it by citing some mechanisms of simulated annealing algorithm. The algorithm in this paper is an improved genetic ant colony algorithm (HGAACO). In this paper, the feasibility of the algorithm is verified through experiments. The experimental results show that with 20 tasks, the ant colony algorithm task allocation time is 93ms, the genetic ant colony algorithm time is 90ms, and the improved algorithm task allocation time proposed in this paper is 74ms, obviously superior. The algorithm proposed in this paper has a certain reference value for solving the creative space computing optimization resource allocation.


2021 ◽  
Author(s):  
Shujjat A. Khan

The streaming capacity for a channel is defined as the maximum streaming rate that can be achieved by every user in the channel. In the thesis, we investigated the streaming capacity problem in both tree-based and mesh-based Peer-to-Peer (P2P) live streaming systems, respectively. In tree-based multi-channel P2P live streaming systems, we propose a crosschannel resource sharing approach to improve the streaming capacity. We use cross-channel helpers to establish the cross-channel overlay links, with which the unused upload bandwidths in a channel can be utilized to help the bandwidth-deficient peers in another channel, thus improving the streaming capacity. In meshed-based P2P live streaming systems, we propose a resource sharing approach to improve the streaming capacity. In mesh-based P2P streaming systems, each peer exchanges video chunks with a set of its neighbors. We formulate the streaming capacity problem into an optimal resource allocation problem. By solving the optimization problem, we can optimally allocate the link rates for each peer, thus improve the streaming capacity.


2021 ◽  
Vol 173 ◽  
pp. 107190
Author(s):  
Paulina Quintanilla ◽  
Stephen J. Neethling ◽  
Diego Mesa ◽  
Daniel Navia ◽  
Pablo R. Brito-Parada

Sign in / Sign up

Export Citation Format

Share Document