A New Rotation-Free Shell Formulation Using Exact Corotational Frame for Dynamic Analysis and Applications

Author(s):  
Jiabei Shi ◽  
Zhuyong Liu ◽  
Jiazhen Hong

Rotation-free shell formulations were proved to be an effective approach to speed up solving large-scaled problems. It reduces systems' degrees-of-freedom (DOF) and avoids shortages of using rotational DOF, such as singular problem and rotational interpolation. The rotation-free element can be extended for solving geometrically nonlinear problems using a corotational (CR) frame. However, its accuracy may be lost if the approach is used directly. Therefore, a new nonlinear rotation-free shell element is formulated to improve the accuracy of the local bending strain energy using a CR frame. The linear strain for bending is obtained by combining two re-derived elements, while the nonlinear part is deduced with the side rotation concept. Furthermore, a local frame is presented to correct the conventional local CR frame. An explicit tangential stiffness matrix is derived based on plane polar decomposition local frame. Simple elemental rotation tests show that the stiffness matrix and the proposed local frame are both correct. Several numerical examples and the application of drape simulations are given to verify the accuracy of nonlinear behavior of the presented element, and some of the results show that the presented method only requires few elements to obtain an accurate solution to the problem studied.

2016 ◽  
Vol 34 (3) ◽  
pp. 269-278 ◽  
Author(s):  
M. Yangui ◽  
S. Bouaziz ◽  
M. Taktak ◽  
M. Haddar ◽  
A. El-Sabbagh

AbstractModal analysis is developed in this paper in order to study the dynamic characteristics of rotating segmented blades assembled with spar. Accordingly, a three dimensional finite element model was built using the three node triangular shell element DKT18, which has six degrees of freedom, to model the blade and the spar structures. This study covers the effect of rotation speed and geometrically nonlinear problems on the vibration characteristics of rotating blade with various pretwist angles. Likewise, the effect of the spar in the blade is taken into consideration. The equation of motion for the finite element model is derived by using Hamilton's principle, while the resulting nonlinear equilibrium equation is solved by applying the Newmark method combined with the Newton Raphson schema. Results show that the natural frequencies increase by taking account of the spar, they are also proportional to the angular rotation speed and influenced by geometric nonlinearity and pretwist angle.


2004 ◽  
Vol 04 (01) ◽  
pp. 1-19 ◽  
Author(s):  
S. ARUL JAYACHANDRAN ◽  
V. KALYANARAMAN ◽  
R. NARAYANAN

To investigate the geometrically nonlinear behavior of space structures using finite elements, the total Lagrangian (TL), updated Lagrangian (UL) and co-rotational (CR) procedures have been used by researchers. For 3D truss structures, the CR formulation has been reported to be computationally more efficient as it possesses the rigid body displacement components during deformations. In this paper, the secant stiffness matrix of truss element will be derived using a simple co-rotational, total Lagrangian (CR–TL) formulation. The incremental rotation matrix, which is the pivotal quantity in the CR formulation, is derived from geometric principles. The secant stiffness matrix is presented in terms of the natural degrees-of-freedom of the truss element. The efficiency and reliability of the present formulation is demonstrated in the solution of several truss problems involving the postbuckling behavior.


10.14311/624 ◽  
2004 ◽  
Vol 44 (5-6) ◽  
Author(s):  
P. Fajman

An accurate triangular plane element with drilling degrees of freedom is shown in this paper. This element can be successfully used for solving linear and nonlinear problems. The main advantage of this element is that the stiffness matrix is obtained from pure deformations – elongations of the edges. This aproach is very suitable for nonlinear analysis, where the unbalanced forces can be obtained directly from elongations of edges. 


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Malamou ◽  
A. Stylianou

Background: The determination of the mechanical properties of biological samples using Atomic Force Microscopy (AFM) at the nanoscale is usually performed using basic models arising from the contact mechanics theory. In particular, the Hertz model is the most frequently used theoretical tool for data processing. However, the Hertz model requires several assumptions such as homogeneous and isotropic samples and indenters with perfectly spherical or conical shapes. As it is widely known, none of these requirements are 100 % fulfilled for the case of indentation experiments at the nanoscale. As a result, significant errors arise in the Young’s modulus calculation. At the same time, an analytical model that could account complexities of soft biomaterials, such as nonlinear behavior, anisotropy, and heterogeneity, may be far-reaching. In addition, this hypothetical model would be ‘too difficult’ to be applied in real clinical activities since it would require very heavy workload and highly specialized personnel. Objective: In this paper a simple solution is provided to the aforementioned dead-end. A new approach is introduced in order to provide a simple and accurate method for the mechanical characterization at the nanoscale. Method: The ratio of the work done by the indenter on the sample of interest to the work done by the indenter on a reference sample is introduced as a new physical quantity that does not require homogeneous, isotropic samples or perfect indenters. Results: The proposed approach, not only provides an accurate solution from a physical perspective but also a simpler solution which does not require activities such as the determination of the cantilever’s spring constant and the dimensions of the AFM tip. Conclusion: The proposed, by this opinion paper, solution aims to provide a significant opportunity to overcome the existing limitations provided by Hertzian mechanics and apply AFM techniques in real clinical activities.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3598
Author(s):  
Sara Russo ◽  
Pasquale Contestabile ◽  
Andrea Bardazzi ◽  
Elisa Leone ◽  
Gregorio Iglesias ◽  
...  

New large-scale laboratory data are presented on a physical model of a spar buoy wind turbine with angular motion of control surfaces implemented (pitch control). The peculiarity of this type of rotating blade represents an essential aspect when studying floating offshore wind structures. Experiments were designed specifically to compare different operational environmental conditions in terms of wave steepness and wind speed. Results discussed here were derived from an analysis of only a part of the whole dataset. Consistent with recent small-scale experiments, data clearly show that the waves contributed to most of the model motions and mooring loads. A significant nonlinear behavior for sway, roll and yaw has been detected, whereas an increase in the wave period makes the wind speed less influential for surge, heave and pitch. In general, as the steepness increases, the oscillations decrease. However, higher wind speed does not mean greater platform motions. Data also indicate a significant role of the blade rotation in the turbine thrust, nacelle dynamic forces and power in six degrees of freedom. Certain pairs of wind speed-wave steepness are particularly unfavorable, since the first harmonic of the rotor (coupled to the first wave harmonic) causes the thrust force to be larger than that in more energetic sea states. The experiments suggest that the inclusion of pitch-controlled, variable-speed blades in physical (and numerical) tests on such types of structures is crucial, highlighting the importance of pitch motion as an important design factor.


1995 ◽  
Vol 117 (3) ◽  
pp. 582-588 ◽  
Author(s):  
L. N. Virgin ◽  
T. F. Walsh ◽  
J. D. Knight

This paper describes the results of a study into the dynamic behavior of a magnetic bearing system. The research focuses attention on the influence of nonlinearities on the forced response of a two-degree-of-freedom rotating mass suspended by magnetic bearings and subject to rotating unbalance and feedback control. Geometric coupling between the degrees of freedom leads to a pair of nonlinear ordinary differential equations, which are then solved using both numerical simulation and approximate analytical techniques. The system exhibits a variety of interesting and somewhat unexpected phenomena including various amplitude driven bifurcational events, sensitivity to initial conditions, and the complete loss of stability associated with the escape from the potential well in which the system can be thought to be oscillating. An approximate criterion to avoid this last possibility is developed based on concepts of limiting the response of the system. The present paper may be considered as an extension to an earlier study by the same authors, which described the practical context of the work, free vibration, control aspects, and derivation of the mathematical model.


1950 ◽  
Vol 17 (1) ◽  
pp. 13-26
Author(s):  
G. D. McCann ◽  
R. H. MacNeal

Abstract The authors have developed a true dynamic analogy which has been used with the Cal Tech electric-analog computer for the rapid and accurate solution of both steady-state and transient beam problems. This analogy has been found well suited to the study of beams having several coupled degrees of freedom, including torsion, simple bending, and bending in a plane. Damping and effects such as rotary inertia may be handled readily. The analogy may also be used in the study of systems involving combined beams and “lumped-constant” elements.


Author(s):  
James K. Wilkins

A project has been conducted to verify a finite element analysis procedure for studying the nonlinear behavior of 90°, stainless steel, 4 inch schedule 10, butt welding elbows. Two displacement controlled monotonic in-plane tests were conducted, one closing and one opening, and the loads, displacements, and strains at several locations were recorded. Stacked 90° tee rosette gages were used in both tests because of their ability to measure strain over a small area. ANSYS shell element 181 was used in the FEA reconciliations. The FEA models incorporated detailed geometric measurements of the specimens, including the welds, and material stress-strain data obtained from the attached straight piping. Initially, a mesh consisting of sixteen elements arrayed in 8 rings was used to analyze the elbow. The load-displacement correlation was quite good using this mesh, but the strain reconciliation was not. Analysis of the FEA results indicated that the axial and hoop strain gradients across the mid-section of the elbow were very high. In order to generate better strain correlations, the elbow mesh was refined in the mid-section of the elbow to include 48 elements per ring and an additional six rings, effectively increasing the element density by nine times. Using the refined mesh produced much better correlations with the strain data.


Sign in / Sign up

Export Citation Format

Share Document