Experimental Study on Pressure Losses in Circular Orifices With Inlet Cross Flow

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Daniel Feseker ◽  
Mats Kinell ◽  
Matthias Neef

The ability to understand and predict the pressure losses of orifices is important in order to improve the air flow within the secondary air system. This experimental study investigates the behavior of the discharge coefficient for circular orifices with inlet cross flow which is a common flow case in gas turbines. Examples of this are at the inlet of a film cooling hole or the feeding of air to a blade through an orifice in a rotor disk. Measurements were conducted for a total number of 38 orifices, covering a wide range of length-to-diameter ratios, including short and long orifices with varying inlet geometries. Up to five different chamfer-to-diameter and radius-to-diameter ratios were tested per orifice length. Furthermore, the static pressure ratio across the orifice was varied between 1.05 and 1.6 for all examined orifices. The results of this comprehensive investigation demonstrate the beneficial influence of rounded inlet geometries and the ability to decrease pressure losses, which is especially true for higher cross flow ratios where the reduction of the pressure loss in comparison to sharp-edged holes can be as high as 54%. With some exceptions, the chamfered orifices show a similar behavior as the rounded ones but with generally lower discharge coefficients. Nevertheless, a chamfered inlet yields lower pressure losses than a sharp-edged inlet. The obtained experimental data were used to develop two correlations for the discharge coefficient as a function of geometrical as well as flow properties.

Author(s):  
Daniel Feseker ◽  
Mats Kinell ◽  
Matthias Neef

The cooling air in the secondary air system of gas turbines is controlled and metered by numerous restrictors, mainly in the shape of orifices. The ability to understand and predict the associated pressure losses are important in order to improve the air flow in the secondary air system. This experimental study investigates the behavior of the discharge coefficient for circular orifices with inlet cross flow which is a common flow case in gas turbines. Examples of this are at the inlet of a film cooling hole or the feeding of air to a blade through an orifice in a rotor disc. Measurements were conducted for a total number of 38 orifices, covering a wide range of length-to-diameter ratios, including short and long orifices with varying inlet geometries. Up to five different chamfer-to-diameter and radius-to-diameter ratios were tested per orifice length. Furthermore, the static pressure ratio across the orifice was varied between 1.05 and 1.6 for all examined orifices. The results of this comprehensive investigation demonstrate the beneficial influence of rounded inlet geometries and the ability to decrease pressure losses, which is especially true for higher cross flow ratios where the reduction of the pressure loss in comparison to sharp edged holes can be as high as 54%. With some exceptions, the chamfered orifices show a similar behavior as the rounded ones but with generally lower discharge coefficients. Nevertheless, a chamfered inlet yields lower pressure losses than a sharp edged inlet. The obtained experimental data was used to develop two correlations for the discharge coefficient as a function of geometrical as well as flow properties.


1998 ◽  
Vol 120 (3) ◽  
pp. 557-563 ◽  
Author(s):  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

This paper presents the discharge coefficients of three film-cooling hole geometries tested over a wide range of flow conditions. The hole geometries include a cylindrical hole and two holes with a diffuser-shaped exit portion (i.e., a fan-shaped and a laidback fan-shaped hole). The flow conditions considered were the crossflow Mach number at the hole entrance side (up to 0.6), the crossflow Mach number at the hole exit side (up to 1.2), and the pressure ratio across the hole (up to 2). The results show that the discharge coefficient for all geometries tested strongly depends on the flow conditions (crossflows at hole inlet and exit, and pressure ratio). The discharge coefficient of both expanded holes was found to be higher than of the cylindrical hole, particularly at low pressure ratios and with a hole entrance side crossflow applied. The effect of the additional layback on the discharge coefficient is negligible.


Author(s):  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

This paper presents the discharge coefficients of three film-cooling hole geometries tested over a wide range of flow conditions. The hole geometries include a cylindrical hole and two holes with a diffuser shaped exit portion (i.e. a fanshaped and a laidback fanshaped hole). The flow conditions considered were the crossflow Mach number at the hole entrance side (up to 0.6), the crossflow Mach number at the hole exit side (up to 1.2), and the pressure ratio across the hole (up to 2). The results show that the discharge coefficient for all geometries tested strongly depends on the flow conditions (crossflows at hole inlet and exit, and pressure ratio). The discharge coefficient of both expanded holes was found to be higher than of the cylindrical hole, particularly at low pressure ratios and with a hole entrance side crossflow applied. The effect of the additional layback on the discharge coefficient is negligible.


2004 ◽  
Vol 126 (4) ◽  
pp. 803-808 ◽  
Author(s):  
M. Dittmann ◽  
K. Dullenkopf ◽  
S. Wittig

The secondary air system of modern gas turbine engines consists of numerous stationary or rotating passages to transport the cooling air, taken from the compressor, to thermally high loaded components that need cooling. Thereby the cooling air has to be metered by orifices to control the mass flow rate. Especially the discharge behavior of rotating holes may vary in a wide range depending on the actual geometry and the operating point. The exact knowledge of the discharge coefficients of these orifices is essential during the design process in order to guarantee a well adapted distribution of the cooling air inside the engine. This is crucial not only for a safe and efficient operation but also fundamental to predict the component’s life and reliability. In this paper two different methods to correlate discharge coefficients of rotating orifices are described and compared, both in the stationary and rotating frame of reference. The benefits of defining the discharge coefficient in the relative frame of reference will be pointed out. Measurements were conducted for two different length-to-diameter ratios of the orifices with varying inlet geometries. The pressure ratio across the rotor was varied for rotational Reynolds numbers up to ReΦ=8.6×105. The results demonstrate the strong influence of rotation on the discharge coefficient. An analysis of the complete data shows significant optimizing capabilities depending on the orifice geometry.


Author(s):  
M. Dittmann ◽  
K. Dullenkopf ◽  
S. Wittig

The secondary air system of modern gas turbine engines consists of numerous stationary or rotating passages to transport the cooling air, taken from the compressor, to thermally high loaded components that need cooling. Thereby the cooling air has to be metered by orifices to control the mass flow rate. Especially the discharge behavior of rotating holes may vary in a wide range depending on the actual geometry and the operating point. The exact knowledge of the discharge coefficients of these orifices is essential during the design process in order to guarantee a well adapted distribution of the cooling air inside the engine. This is crucial not only for a safe and efficient operation but also fundamental to predict the component’s life and reliability. In this paper two different methods to correlate discharge coefficients of rotating orifices are described and compared, both in the stationary and rotating frame of reference. The benefits of defining the discharge coefficient in the relative frame of reference will be pointed out. Measurements were conducted for two different length-to-diameter ratios of the orifices with varying inlet geometries. The pressure ratio across the rotor was varied for rotational Reynolds numbers up to Reφ = 8:6 × 105. The results demonstrate the strong influence of rotation on the discharge coefficient. An analysis of the complete data shows significant optimising capabilities depending on the orifice geometry.


Author(s):  
Michael Gritsch ◽  
Achmed Schulz ◽  
Sigmar Wittig

Measurements of discharge coefficients for five configurations of cylindrical film cooling hole geometries are presented. These comprise holes of varying angles of inclination (α= 30, 45, and 90deg) and orientation (γ= 0, 45, and 90deg) which are tested over a wide range of engine like conditions in terms of internal and external crossflow Mach numbers (Mam=0…1.2, Mac=0…0.6) as well as pressure ratios (ptc/pm=1…2.25). Results show that discharge coefficients do not solely depend on hole geometry but are also profoundly affected by the internal and external crossflow conditions. The effect of increasing the orientation angle on the discharge behavior is very similar to the effect of increasing the inclination angle. Both result in higher losses particularly at the cooling hole inlet while the losses at the hole exit are only slightly affected.


1983 ◽  
Vol 105 (2) ◽  
pp. 243-248 ◽  
Author(s):  
N. Hay ◽  
D. Lampard ◽  
S. Benmansour

The strongest flow parameter governing the film cooling effectiveness provided by a row of holes is the blowing rate. Precise setting of the blowing rate at the design stage requires accurate data for the discharge coefficient of the holes. The effects of crossflow on the discharge coefficient have received scant attention in published work to date. In the present work, the discharge coefficient of single rows of holes has been measured in a specially constructed isothermal rig over a wide range of geometric and flow conditions. Mainstream and coolant Mach numbers have been varied independently over the range 0 to 0.4 for pressure ratios in the range 0 to 2. Cooling hole length to diameter ratios were varied between 2 and 6, and inclinations of 30, 60, and 90 deg were used. The results show that the influence of crossflow is strong and complex, particularly with regard to that on the coolant side. A large range of data is presented sufficient to permit the discharge coefficient to be inferred for many cases of practical importance. Suggestions are also made for a promising theoretical approach to this problem.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Marcus Hüning

Gas turbines and jet engines consist of a network of connected cavities beside the main gas path called the secondary air system. These cavities, which are often surrounded by stationary and high angular speed rotating walls are exposed to varying pressure and temperature levels of air or oil contaminated air and are connected to each other by orifices or restrictors. It is vital to control the secondary flow to enable a reliable and efficient engine design, which meets component durability with a minimum of parasitic air consumption. It is essential to understand the flow physics as well as network interdependency in order to minimize the flow consumption and yet meeting engine operating requirements, as well as practical parts component design or manufacturing needs. In this connection, computer network codes containing model conceptions, which can accurately predict orifice flows, are essential. In an effort to provide usable further insight into flows across restrictors, such as orifices, this publication compares test results and orifice loss calculation models from the open literature with the aid of transformation laws and contour plots. The influence of different geometric features is incorporated into a model for the calculation of discharge coefficients. This publication is an extract of the underlying widespread and more detailed ASME paper (Huening, 2008, “Comparison of Discharge Coefficient Measurements and Correlations for Several Orifice Designs With Cross-Flow and Rotation Around Several Axes,” ASME Paper No. GT2008-50976). Minor errors, noticed during adapting, are corrected.


2001 ◽  
Vol 123 (4) ◽  
pp. 781-787 ◽  
Author(s):  
Michael Gritsch ◽  
Achmed Schulz ◽  
Sigmar Wittig

Measurements of discharge coefficients for five configurations of cylindrical film cooling hole geometries are presented. These comprise holes of varying angles of inclination (α=30, 45, and 90 deg) and orientation (γ=0, 45, and 90 deg), which are tested over a wide range of engine-like conditions in terms of internal and external crossflow Mach numbers (Mam=0…1.2,Mac=0…0.6) as well as pressure ratios ptc/pm=1…2.25. Results show that discharge coefficients do not depend solely on hole geometry, but are also profoundly affected by the internal and external crossflow conditions. The effect of increasing the orientation angle on the discharge behavior is very similar to the effect of increasing the inclination angle. Both result in higher losses, particularly at the cooling hole inlet while the losses at the hole exit are only slightly affected.


Author(s):  
Ronald S. Bunker ◽  
Jeremy C. Bailey

Gas turbine blades utilize internal geometry such as turbulator ribs for improved cooling. In some designs it may be desirable to benefit from the internal cooling enhancement of ribs as well as external film cooling. An experimental study has been performed to investigate the effect of turbulator rib placement on film hole discharge coefficient. In the study a square passage having a hydraulic diameter of 1.27 cm is used to feed a single angled film jet. The film hole angle to the surface is 30° and the hole length-to-diameter ratio is 4. Turbulators were placed in one of three positions: upstream of film hole inlet, downstream of film hole inlet, and with the film hole inlet centered between turbulators. For each case 90° turbulators with a passage blockage of 15% and a pitch to height ratio of 10 were used. Tests were run varying film hole-to-cross flow orientation as 30°, 90°, and 180°, pressure ratio from 1.02 to 1.8, and channel cross flow velocity from Mach 0 to 0.3. Film hole flow is captured in a static plenum with no external cross flow. Experimental results of film discharge coefficients for the turbulated cases and for a baseline smooth passage are presented. Alignment of the film hole entry with respect to the turbulator is shown to have a substantial effect on the resulting discharge coefficients. Depending on the relative alignment and flow direction, discharge coefficients can be increased or decreased 5 to 20% from the non-turbulated case, and in the worst instance experience a decrease of as much as 50%.


Sign in / Sign up

Export Citation Format

Share Document