Dynamic Analysis on Unbuckling Process of Helically Buckled Coiled Tubing While Milling Plugs

2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Xing Qin ◽  
Deli Gao ◽  
Yongsheng Liu

In down-hole interventions, the thin elastic coiled tubing (CT) extended for thousands of meters underground would typically undergo helical buckling as a result of axial compressive force. This paper builds an analytical model to describe the unbuckling behavior of a helically buckled CT with a new view to the stretching process in the plug milling operations. The new dynamic unbuckling equation is built on the basis of the general bending and twisting theory of rods. Under the continuous contact assumption, the helical angle is only subject to time; thus, the dynamic equations can be simplified and the analytical solutions can be obtained. By using the new governing equations, the angular velocity, axial force, and contact force relative to CT are analyzed in the unbuckling process. The calculation results indicate that the parameters including CT diameters and wellbore diameters have a strong influence on the variation of axial force and wellbore contact force. Moreover, the wellbore contact force is greater than zero during the whole unbuckling process which confirms the continuous contact assumption. These new results provide important guidance for accurate job design for the plug milling operations during the well completion stage.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. Tahmaseb Towliat Kashani ◽  
Supun Jayasinghe ◽  
Seyed M. Hashemi

The free vibration of beams, subjected to a constant axial load and end moment and various boundary conditions, is examined. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the differential equations governing coupled flexural-torsional vibrations and stability of a uniform, slender, isotropic, homogeneous, and linearly elastic beam, undergoing linear harmonic vibration, are first reviewed. The existing formulations are then briefly discussed and a conventional finite element method (FEM) is developed. Exploiting the MATLAB-based code, the resulting linear Eigenvalue problem is then solved to determine the Eigensolutions (i.e., natural frequencies and modes) of illustrative examples, exhibiting geometric bending-torsion coupling. Various classical boundary conditions are considered and the FEM frequency results are validated against those obtained from a commercial software (ANSYS) and the data available in the literature. Tensile axial force is found to increase natural frequencies, indicating beam stiffening. However, when a force and an end moment are acting in combination, the moment reduces the stiffness of the beam and the stiffness of the beam is found to be more sensitive to the changes in the magnitude of the axial force compared to the moment. A buckling analysis of the beam is also carried out to determine the critical buckling end moment and axial compressive force.


2021 ◽  
Author(s):  
M. Tahmaseb Towliat Kashani ◽  
Supun Jayasinghe Jayashinghe ◽  
Seyed M. Hashemi

The free vibration of beams, subjected to a constant axial load and end moment and various boundary conditions, is examined. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the differential equations governing coupled flexural-torsional vibrations and stability of a uniform, slender, isotropic, homogeneous, and linearly elastic beam, undergoing linear harmonic vibration, are first reviewed. The existing formulations are then briefly discussed and a conventional finite element method (FEM) is developed. Exploiting the MAT LAB-based code, the resulting linear Eigenvalue problem is then solved to determine the Eigensolutions (i.e., natural frequencies and modes) of illustrative examples, exhibiting geometric bending-torsion coupling. Various classical boundary conditions are considered and the FEM frequency results are validated against those obtained from a commercial software (ANSYS) and the data available in the literature. Tensile axial force is found to increase natural frequencies, indicating beam stiffening. However, when a force and an end moment are acting in combination, the moment reduces the stiffness of the beam and the stiffness of the beam is found to be more sensitive to the changes in the magnitude of the axial force compared to the moment. A buckling analysis of the beam is also carried out to determine the critical buckling end moment and axial compressive force.


2021 ◽  
Author(s):  
M. Tahmaseb Towliat Kashani ◽  
Supun Jayasinghe Jayashinghe ◽  
Seyed M. Hashemi

The free vibration of beams, subjected to a constant axial load and end moment and various boundary conditions, is examined. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the differential equations governing coupled flexural-torsional vibrations and stability of a uniform, slender, isotropic, homogeneous, and linearly elastic beam, undergoing linear harmonic vibration, are first reviewed. The existing formulations are then briefly discussed and a conventional finite element method (FEM) is developed. Exploiting the MAT LAB-based code, the resulting linear Eigenvalue problem is then solved to determine the Eigensolutions (i.e., natural frequencies and modes) of illustrative examples, exhibiting geometric bending-torsion coupling. Various classical boundary conditions are considered and the FEM frequency results are validated against those obtained from a commercial software (ANSYS) and the data available in the literature. Tensile axial force is found to increase natural frequencies, indicating beam stiffening. However, when a force and an end moment are acting in combination, the moment reduces the stiffness of the beam and the stiffness of the beam is found to be more sensitive to the changes in the magnitude of the axial force compared to the moment. A buckling analysis of the beam is also carried out to determine the critical buckling end moment and axial compressive force.


2020 ◽  
Author(s):  
Kaveh Yekta ◽  
Benjamin Stang ◽  
Scott Hilling ◽  
Chris Schwartz ◽  
Bettina Cheung ◽  
...  

Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


2021 ◽  
Author(s):  
Heenkenda Jayasinghe

Dynamic Finite Element (DFE) and conventional finite element formulations are developed to study the flexural - torsional vibration and stability of an isotropic, homogeneous and linearly elastic pre-loaded beam subjected to an axial load and end-moment. Various classical boundary conditions are considered. Elementary Euler - Bernoulli bending and St. Venant torsion beam theories were used as a starting point to develop the governing equations and the finite element solutions. The nonlinear Eigenvalue problem resulted from the DFE method was solved using a program code written in MATLAB and the natural frequencies and mode shapes of the system were determined form the Eigenvalues and Eigenvectors, respectively. Similarly, a linear Eigenvalue problem was formulated and solved using a MATLAB code for the conventional FEM method. The conventional FEM results were validated against those available in the literature and ANSYS simulations and the DFE results were compared with the FEM results. The results confirmed that tensile forces increased the natural frequencies, which indicates beam stiffening. On the contrary, compressive forces reduced the natural frequencies, suggesting a reduction in beam stiffness. Similarly, when an end-moment was applied the stiffness of the beam and the natural frequencies diminished. More importantly, when a force and end-moment were acting in combination, the results depended on the direction and magnitude of the axial force. Nevertheless, the stiffness of the beam is more sensitive to the changes in the magnitude and direction of the axial force compared to the moment. A buckling analysis of the beam was also carried out to determine the critical buckling end-moment and axial compressive force.


2016 ◽  
Vol 40 (4) ◽  
pp. 585-596
Author(s):  
Zhenhuan Ye ◽  
Zhansheng Liu ◽  
Liqin Wang

Based on a loading-deformation relationship of bearing elements and the coordination of displacement between bearings in the rotor system, a model for calculating the additional axial force of angular-contact ball bearings in a single-rotor system is established. Nonlinear equations of this model are solved through the Rapid Descent method and Newton-Raphson method. The simulation results which are based on Gupta’s example verify that both the model and solving methods in this paper are reliable. A pair of 276927NK1W1(H) angular-contact ball bearings in symmetry in the single-rotor system is used as the example, calculation results of the additional axial force of bearings from the model in this paper and from the ISO method are compared and the influence of bearing geometry parameters and working conditions on the additional axial force is further studied. This model and its conclusions could provide the basic data and reference for analyzing the carrying ability and dynamic properties of rolling bearings.


2021 ◽  
Author(s):  
Nadir Husein ◽  
Jianhua Xu ◽  
Igor Novikov ◽  
Ruslan Gazizov ◽  
Anton Buyanov ◽  
...  

Abstract From year to year, well drilling is becoming more technologically advanced and more complex, therefore we observe the active development of drilling technologies, well completion and production intensification. It forms the trend towards the complex well geometry and growth of the length of horizontal sections and therefore an increase of the hydraulic fracturing stages at each well. It's obvious, that oil producing companies frequently don't have proved analytical data on the actual distribution of formation fluid in the inflow profiles for some reasons. Conventional logging methods in horizontal sections require coiled tubing (CT) or downhole tractors, and the well preparation such as drilling the ball seat causing technical difficulties, risks of downhole equipment getting lost or stuck in the well. Sometimes the length of horizontal sections is too long to use conventional logging methods due to their limitations. In this regard, efficient solution of objectives related to the production and development of fields with horizontal wells is complicated due to the shortage of instruments allowing to justify the horizontal well optimal length and the number of MultiFrac stages, difficulties in evaluating the reservoir management system efficiency, etc. A new method of tracer based production profiling technologies are increasingly applied in the global oil industry. This approach benefits through excluding well intervention operations for production logging, allows continuous production profiling operations without the necessity of well shut-in, and without involving additional equipment and personal to be located at wellsite.


Author(s):  
H. Yabuno ◽  
R. Oowada ◽  
N. Aoshima

Abstract The present work describes a significant influence of a slight Coulomb damping on buckling of the simply supported beam subjected to an axial compressive force. Coulomb damping in the supporting points produces equilibrium regions around the well-known stable and unstable steady states under the pitchfork bifurcation which are analytically obtained in no consideration of the effect of Coulomb damping. After the transient response, the beam can stop any states in the equilibrium region, which becomes wider in the vicinity of the bifurcation point, depending on the initial condition. Also, the imperfection due to gravity is considered and it is theoretically shown that the equilibrium region is connected in the case when the imperfection due to gravity is relatively small comparing with the effect of the Coulomb damping, while the steady states under the pitchfork bifurcation in no consideration of the effect of Coulomb damping are necessarily disconnected by imperfection. Experimental results confirm the theoretically predicted effect of Coulomb damping in the supporting point on the buckling behavior of the beam.


2022 ◽  
Vol 168 ◽  
pp. 108739
Author(s):  
Jie Zhang ◽  
Xu Liang ◽  
Zhonghai Zhang ◽  
Guanhua Feng ◽  
Quanliang Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document