Bonded Flexible Pipe Model Using Macroelements

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Rodrigo Provasi ◽  
Fernando Geremais Toni ◽  
Clóvis de Arruda Martins

Flexible pipes are structures composed by many layers that vary in composition and shapes. The structural behavior of each layer is defined by the role it must play. The construction of flexible pipes is such that the layers are unbounded, with relative movement between them. Even though this characteristic is what enables its high bending compliant behavior, if the displacements involved are small, a bonded analysis is interesting to grasp the general characteristics of the problem. The bonded hypothesis means that there is no movement relative between layers, which is fine for a small displacement analysis. It also creates a lower bound for the movement, since when considering increasingly friction coefficient values, it tends to the bonded situation. The main advantage of such hypothesis is that the system becomes linear, leading to fast solving problems (when compared to full frictional analysis) and giving insights to the pipe behavior. The authors have previously developed a finite element based one called macroelements. This model enables a fast-solving problem with less memory consumption when compared to multipurpose software. The reason behind it is the inclusion of physical characteristics of the problem, enabling the reduction in both number of elements and memory used and, since there are less elements and degrees-of-freedom, faster solved problems. In this paper, the advantages of such model are shown by using examples that are representative of a simplified, although realistic, flexible pipe. Comparisons between the macroelement model and commercial software are made to show its capabilities.

Author(s):  
Rodrigo Provasi ◽  
Fernando Geremias Toni ◽  
Clovis de Arruda Martins

Abstract Flexible pipes are structures composed by many layers varying in composition and shapes, in which the structural behavior is defined by the role it must play. Flexible pipes construction is such that layers are unbounded, allowing relative movement between them and modifying its behavior. Many approaches are used to model such cables, both analytical and numerical, such as the macroelements model. This sort of model consists in finite elements where geometrical characteristics are taken into account by the formulation and is under development by the authors. Previous works have shown in detail the modeled cylindrical and helical elements, as well node-to-node connection elements (bounded, frictionless and frictional), which have allowed simplified flexible pipe with bonded elements simulations. This article will focus on modeling a simplified cable consisting in an external sheath, two armor layers and a polymeric core, since recent advances in the contact formulation opens the possibility to incorporate friction between the layers. Taking into consideration accuracy, computational time and memory usage, results from macroelements are compared to commercial finite element software.


Author(s):  
Fernando Geremias Toni ◽  
Clóvis de Arruda Martins

Abstract Due to the number of layers and their respective geometrical complexities, finite element analyzes of flexible pipes usually require large-scale schemes, with a high number of elements and degrees-of-freedom. If proper precautions are not taken, such as suitable algorithms and numerical methods, the computational costs of these analyzes may become unfeasible to the current computational standards. Finite macroelements are finite elements formulated for the solution of a specific problem considering and taking advantage of its particularities, such as geometry patterns, in order to obtain computational advantages, as reduced number of degrees-of-freedom and ease of problem description. The element-by-element method (EBE) also fits very well in this context, since it is characterized by the elimination of the global stiffness matrix and its memory consumption grows linearly with the number of elements, besides being highly parallelizable. Over the last decades, several works regarding the EBE method were published in the literature, but none of them directly applied to flexible pipes. Due to the contact elements between the layers, problems with flexible pipes are usually characterized by very large matrix-bandwidth, making the implementation of EBE method more challenging, so that its efficiency and scalability are not compromised. Therefore, this work presents a parallelized implementation of an element-by-element architecture for structural analysis of flexible pipes using finite macroelements, consisting of an extension of a previous work from the same authors. New synchronization algorithms were developed, with scalability improvements, the methodology was extended to other finite macroelements and comparisons were made with a well-stablished FEM software, with significant gains in simulation time and memory consumption.


Author(s):  
Dag Fergestad ◽  
Frank Klæbo ◽  
Jan Muren ◽  
Pål Hylland ◽  
Tom Are Grøv ◽  
...  

This paper discusses the structural challenges associated with high axial temperature gradients and the corresponding internal cross section forces. A representative flexible pipe section designed for high operational temperature has been subject to full scale testing with temperature profiles obtained by external heating and cooling. The test is providing detailed insight in onset and magnitude of relative layer movements and layer forces. As part of the full-scale testing, novel methods for temperature gradient testing of unbonded flexible pipes have been developed, along with layer force- and deflection-measurement techniques. The full-scale test set-up has been subject to numerous temperature cycles of various magnitudes, gradients, absolute temperatures, as well as tension cycling to investigate possible couplings to dynamics. Extensive use of finite element analysis has efficiently supported test planning, instrumentation and execution, as well as enabling increased understanding of the structural interaction within the unbonded flexible pipe cross section. When exploiting the problem by finite element analysis, key inputs will be correct material models for the polymeric layers, and as-built dimensions/thicknesses. Finding the balance between reasonable simplification and model complexity is also a challenge, where access to high quality full-scale tests and dissected pipes coming back from operation provides good support for these decisions. Considering the extensive full scale testing, supported by advanced finite element analysis, it is evident that increased attention will be needed to document reliable operation in the most demanding high temperature flexible pipe applications.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins ◽  
Silas Henrique Gonçalves ◽  
Alfredo Gay Neto

The launching procedure can be one of the most critical stages of the operational lifetime of a flexible pipe. From the beginning of the pipe unrolling off the reel to the moment of its separation from the launching vessel, the flexible pipe is subjected to severe loads such as crushing and tension. This paper focuses on the crushing load applied to the flexible riser by the shoes of the caterpillars on the launching vessel. The objective is to present an effective methodology to evaluate the stresses at the structural nucleus of a flexible pipe during launching using the Finite Element Method. Firstly, a tridimensional ring model is used to represent the structural nucleus of the flexible pipe. In that model, the geometry of the interlocked carcass and the pressure armor is accurately represented. Then, similar models are constructed including a series of geometry simplifications. Those simplified models are compared to the baseline in order to evaluate the relevancy of an accurate representation of the geometry of the metallic layers. The results of these comparisons are presented and discussed.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

Axial compressive loads can appear in several situations during the service life of a flexible pipe, due to pressure variations during installation or due to surface vessel heave. The tensile armor withstands well tension loads, but under compression, instability may occur. A Finite Element model is constructed using Abaqus in order to study a flexible pipe compound by external sheath, two layers of tensile armor, a high strength tape and a rigid nucleus. This model is fully tridimensional and takes into account all kinds of nonlinearities involved in this phenomenon, including contacts, gaps, friction, plasticity and large displacements. It also has no symmetry or periodical limitations, thus permitting each individual wire of the tensile armor do displace in any direction. Case studies were performed and their results discussed.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

In order to study the axial compressive behavior of flexible pipes, a nonlinear tridimensional finite element model was developed. This model recreates a five layer flexible pipe with two tensile armor layers, an external polymeric sheath, an orthotropic high strength tape, and a rigid inner core. Using this model, several studies were conducted to verify the influence of key parameters on the wire instability phenomenon. The pipe sample length can be considered as one of these parameters. This paper includes a detailed description of the finite element model itself and a case study where the length of the pipe is varied. The procedure of this analysis is here described and a case study is presented which shows that the sample length itself has no practical effect on the prebuckling response of the samples and a small effect on the limit force value. The postbuckling response, however, presented high sensitivity to the changes, but its erratic behavior has made impossible to establish a pattern.


Author(s):  
Olaf O. Otte Filho ◽  
Rafael L. Tanaka ◽  
Rafael G. Morini ◽  
Rafael N. Torres ◽  
Thamise S. V. Vilela

In the design of flexible pipes, predict the anchoring behavior on end fittings is always challenging. In this sense, Prysmian Surflex has developed a finite element model, which should help the end fitting design as well the prediction of the structural behavior and the acceptable maximum loads. The current model considers that the contact between armor-resin is purely cohesive and has been suitable for the design of end fittings [1] and [2]. But tests and new studies [3] and [4] indicate that only cohesive assumption would not be the best approach. Experimental data from prototype tests also show that the current model would not predict acceptable results for loads higher than those used in previous projects. This document will describe a study developed considering the friction and thermal contraction, instead of the cohesive phenomenon in the anchoring behavior analysis. Small scale tests were conducted in order to understand the anchoring relation between the resin and the wire used in the tensile armor. For this purpose, a special test device was developed to simulate an enclosure system. A parametric study was also performed to identify the cooling temperatures, coefficients of friction and contact properties parameters taken from small scale tests. The finite element model considers the thermal effects during exothermic curing. Using the new parameters obtained, a second model was developed. This model consists of only one real shaped bended wire inside an end fitting cavity. To validate the model, samples were tested on laboratory according anchoring design. The results of this round of tests were studied and corroborate the argument that use friction and thermal effects is better than use only the cohesive condition.


Author(s):  
Fernando Geremias Toni ◽  
Clóvis de Arruda Martins

Flexible pipes are employed to transport oil and natural gas from the seabed to the floating units, and vice versa. These pipes are made of concentric layers of different geometries, materials and structural functions in order to withstand a series of static and dynamic loads from its adverse operating environment. The local analysis is an important stage in the design of a flexible pipe and consists in determining the stresses and strains distributions along its layers. Multipurpose finite element packages, such as ANSYS and ABAQUS, are commonly used in this task, but present many limitations for their generic nature, varying from the absence of specific tools for model creation to heavy restrictions of the number of degrees-of-freedom to make computational processing feasible. Over the past years, several macro finite elements were formulated by PROVASI & MARTINS specifically for modeling a flexible pipe, allowing a reduction in the total number of degrees-of-freedom. However, until the present moment, there is no parallel processing software that efficiently implements these elements for large model applications. Aiming greater computational performance, the macro elements can be combined with the element-by-element (EBE) method, which is characterized by the global stiffness matrix elimination, is highly parallelizable, scalable and shows a memory consumption that grows linearly with the number of elements in the model. In this context, a parallelized architecture for structural analysis of flexible pipes that explores the EBE method and macro finite elements has been developed, being of great interest for design applications in the industry.


1974 ◽  
Vol 2 (3) ◽  
pp. 195-210 ◽  
Author(s):  
R. A. Ridha

Abstract An analysis is presented for determining tire deformation due to shrinkage. The analysis uses composite theory and the finite element technique in modeling the material properties and the structural behavior. The constant strain toroidal shell element developed by Wilson for small displacement and isotropic properties is modified for orthotropic properties which depend on the element location. Temperature history and the buildup of shrink forces during cure are determined experimentally. The shrink forces are represented by a set of equivalent loads applied at the nodes. Good correlation is obtained between calculated and experimental displacements. The analysis is applied in relating the mold shape to the final shape of the tire.


Author(s):  
Yutian Lu ◽  
Huibin Yan ◽  
Yong Bai ◽  
Peng Cheng

The bending behavior of unbonded flexible pipe is governed by the response of the helical wires in the tensile armor to bending. The behavior of the helical wire, especially the axial strain, is influenced by the slip mechanism as a result of an increasing curvature under bending. In the present paper, two limit curves are considered with a certain curvature. A 3-D finite element model using ABAQUS is developed to simulate the practical behavior of the helical wires under bending. By comparing the FEA and theoretical results, a basic conclusion about the real slip path of the helical wire between two limit curves is introduced. A hysteretic bending moment-curvature relationship induced by the slip mechanism is obtained from the finite element model as well.


Sign in / Sign up

Export Citation Format

Share Document