scholarly journals Rigid Foldability of Generalized Triangle Twist Origami Pattern and Its Derived 6R Linkages

2018 ◽  
Vol 10 (5) ◽  
Author(s):  
Huijuan Feng ◽  
Rui Peng ◽  
Jiayao Ma ◽  
Yan Chen

Rigid origami is a restrictive form of origami that permits continuous motion between folded and unfolded states along the predetermined creases without stretching or bending of the facets. It has great potential in engineering applications, such as foldable structures that consist of rigid materials. The rigid foldability is an important characteristic of an origami pattern, which is determined by both the geometrical parameters and the mountain-valley crease (M-V) assignments. In this paper, we present a systematic method to analyze the rigid foldability and motion of the generalized triangle twist origami pattern using the kinematic equivalence between the rigid origami and the spherical linkages. All schemes of M-V assignment are derived based on the flat-foldable conditions among which rigidly foldable ones are identified. Moreover, a new type of overconstrained 6R linkage and a variation of doubly collapsible octahedral Bricard are developed by applying kirigami technique to the rigidly foldable pattern without changing its degree-of-freedom. The proposed method opens up a new way to generate spatial overconstrained linkages from the network of spherical linkages. It can be readily extended to other types of origami patterns.

Author(s):  
Rui Peng ◽  
Jiayao Ma ◽  
Yan Chen

Rigid origami is an important subset of origami with broad engineering applications from space structures to metamaterials. The rigid foldability of an origami pattern is determined by both the geometric parameters and the mountain-valley crease assignment. In this paper, by using the equivalent relationships between origami vertices and spherical linkages, a systematic method was proposed to analyze the motion of the triangle-twist pattern with varying distribution of mountain and valley creases, and its rigid folding types were identified. Moreover, kirigami technology was applied to the rigid folding pattern without changing its degree of freedom, from which a new kind of overconstrained 6R linkage was developed. The theoretical method proposed in this paper can be readily extended to study other types of origami patterns, which will in turn help to design structures with large deployable ratio as well as some new spatial linkages.


Author(s):  
Luca Zimmermann ◽  
Tino Stanković ◽  
Kristina Shea

Designing structures through the means of origami brings many advantages for engineering applications. In current research, the underlying origami principle is often selected based on experience out of a range of known patterns and then manually altered to fit the design problem. This tedious and time-consuming procedure, if automated through computational tools, has the potential to facilitate the design of origami engineering applications. This however requires efficient kinematic simulation of origamis that is also able to accommodate to design requirements specific to foldable structures. In this paper, a simulator is implemented that is able to model the motion of origami vertices without the need for mountain-valley assignments and with a path of deployment as activation. The formulation of constraint equations through these vertex positions does not restrict the system to certain folding configurations, which is why the approach is able to detect different rigid body modes resulting from single activations. Finding rigid body modes can be beneficial for the search of design alternatives conforming to certain input requirements. The results of the simulation show promise for the incorporation of the simulator within an automated procedure for the design of origamis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1808
Author(s):  
Liqiang Zhuo ◽  
Huiru He ◽  
Ruimin Huang ◽  
Shaojian Su ◽  
Zhili Lin ◽  
...  

The valley degree of freedom, like the spin degree of freedom in spintronics, is regarded as a new information carrier, promoting the emerging valley photonics. Although there exist topologically protected valley edge states which are immune to optical backscattering caused by defects and sharp edges at the inverse valley Hall phase interfaces composed of ordinary optical dielectric materials, the dispersion and the frequency range of the edge states cannot be tuned once the geometrical parameters of the materials are determined. In this paper, we propose a chirped valley graphene plasmonic metamaterial waveguide composed of the valley graphene plasmonic metamaterials (VGPMs) with regularly varying chemical potentials while keeping the geometrical parameters constant. Due to the excellent tunability of graphene, the proposed waveguide supports group velocity modulation and zero group velocity of the edge states, where the light field of different frequencies focuses at different specific locations. The proposed structures may find significant applications in the fields of slow light, micro–nano-optics, topological plasmonics, and on-chip light manipulation.


2021 ◽  
Vol 11 (2) ◽  
pp. 609
Author(s):  
Tadeusz Chyży ◽  
Monika Mackiewicz

The conception of special finite elements called multi-area elements for the analysis of structures with different stiffness areas has been presented in the paper. A new type of finite element has been determined in order to perform analyses and calculations of heterogeneous, multi-coherent, and layered structures using fewer finite elements and it provides proper accuracy of the results. The main advantage of the presented special multi-area elements is the possibility that areas of the structure with different stiffness and geometrical parameters can be described by single element integrated in subdivisions (sub-areas). The formulation of such elements has been presented with the example of one-dimensional elements. The main idea of developed elements is the assumption that the deformation field inside the element is dependent on its geometry and stiffness distribution. The deformation field can be changed and adjusted during the calculation process that is why such elements can be treated as self-adaptive. The application of the self-adaptation method on strain field should simplify the analysis of complex non-linear problems and increase their accuracy. In order to confirm the correctness of the established assumptions, comparative analyses have been carried out and potential areas of application have been indicated.


2013 ◽  
Vol 391 ◽  
pp. 232-236
Author(s):  
Wen Huan Yang ◽  
Hai Xu Chen ◽  
Shuang Xie ◽  
Chun Ren Fang

A new Multi-degree of freedom motor and its establishing of teeth layer parameters have been introduced in the paper, also including application method of database, namely using Quasi-Newton methods to solve the non-linear equations of the new motors magnetic circuit net, formed a refined method for designing and analyzing of motor. The establishment of 3d tooth layer parameters database, is provided for the calculation in the design of the new type motor conveniently.


2021 ◽  
Author(s):  
Tianying Wang ◽  
Yanjun Zhou ◽  
Honglin Tang ◽  
Shihua Zhang ◽  
Haiqing Tian

Abstract The JCSM concept (short for Jackup Combined Semisubmersible Multifunction Platform) is a new type of semisubmersible platform presented by the first author, which overcomes the shortcomings of the available semisubmersible platforms, and combines the advantages of the traditional semisubmersible platform, the Jackup platform and the new FPSO concept - IQFP. Due to the complicated interaction between stability and hydrodynamic performance, it is necessary to explore the effect of geometrical parameters of the main body on the stability and hydrodynamic performance in order to obtain the optimal design plan of a JCSM platform. Firstly, the structure components and innovations of the JCSM were briefly reviewed in order to facilitate readers to understand its full picture. Then, six independent geometric parameters were selected by carefully studying the shape characteristics of the initial design plan of a JCSM study case. Furthermore, the stability heights and motion responses of various floating bodies of the JCSM case with different geometric parameters in wave were calculated using boundary element method based on potential flow theory. Lastly, effect of the shape parameters on stability and hydrodynamic performance of the JCSM was qualitatively evaluated. The research would shed lights on the shape design of the JCSM main body.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Alden Yellowhorse ◽  
Larry L. Howell

Rigidly foldable origami crease patterns can be translated into corresponding rigid mechanisms with at least one degree of freedom. However, origami crease patterns of interest for engineering applications are not always rigidly foldable, and designers trying to adapt a crease pattern may be confronted with the need to add more mobility to their design. This paper presents design guidelines for making alterations to a crease pattern to make it rigidly foldable. Adding creases, removing panels, and splitting creases are presented as potential alterations for increasing mobility, and approaches for determining the position and number of alterations are discussed. This paper also investigates means for reducing the number of changes necessary to achieve this condition. The approach is developed in general and illustrated through a demonstrative example.


2020 ◽  
Vol 29 (04) ◽  
pp. 2050015 ◽  
Author(s):  
Michał Jabłonowski ◽  
Łukasz Trojanowski

In this paper, we present a systematic method to generate prime knot and prime link minimal triple-point projections, and then classify all classical prime knots and prime links with triple-crossing number at most four. We also extend the table of known knots and links with triple-crossing number equal to five. By introducing a new type of diagrammatic move, we reduce the number of generating moves on triple-crossing diagrams, and derive a minimal generating set of moves connecting triple-crossing diagrams of the same knot.


Author(s):  
Tsz-Ho Kwok

Abstract Origami is an art that creates a three-dimensional (3D) shape only by folding. This capability has drawn much research attention recently, and its applied or inspired designs are utilized in various engineering applications. Most current designs are based on the existing origami patterns and their known deformation, but origami patterns are universally designed for zero-thickness like a paper. To extend the designs for engineering applications, simulation of origami is needed to help designers explore and understand the designs, and the simulation must take the material thickness into account. With the observation that origami is mainly a geometry design problem, this paper develops a geometric simulation for thick origami, similar to a pseudo-physics approach. The actuation, constraints, and mountain/valley assignments of origami are also incorporated in the geometric formulation. Experimental results show that the proposed method is efficient and accurate. It can simulate successfully the bistable property of a waterbomb base, two different action origami, and the elasticity of origami panels when they are not rigid.


Sign in / Sign up

Export Citation Format

Share Document