Development of a New High-Strength Steel for Low Pressure Steam Turbine End-Stage Blades

Author(s):  
Hannes Teuber ◽  
Jochen Barnikel ◽  
Michael Dankert ◽  
Walter David ◽  
Andrei Ghicov ◽  
...  

Influenced by the growing share of Renewable Energies, higher flexibility and increased efficiency of fossil power plants as well as improved cost efficiency in production of turbine components are evident market trends. Daily cycling in turbine operations leads to advanced requirements for robust design especially of rotating parts. Low pressure (LP) steam turbine end-stage blades with larger exhaust areas are one lever to increase the efficiency of the turbine by reduction of exhaust losses and also to realize cost-efficient single flow exhaust applications. Consequently, blade steels with improved mechanical properties are required. The results of the development of a new high-strength precipitation-hardening (PH) steel for LP end-stage blade application with significantly enhanced material properties are reported. The paper covers the testing strategy applied and information on crucial material parameters like improved low cycle and high cycle fatigue (HCF) behavior while keeping good stress corrosion cracking (SCC) resistance and corrosion fatigue (CF) properties. Furthermore, first manufacturing experiences and validation results from a full-scale component test rig are presented.

Author(s):  
Hannes Teuber ◽  
Jochen Barnikel ◽  
Michael Dankert ◽  
Walter David ◽  
Andrei Ghicov ◽  
...  

Influenced by the growing share of Renewable Energies, higher flexibility and increased efficiency of fossil power plants as well as improved cost efficiency in production of turbine components are evident market trends. Daily cycling in turbine operations leads to advanced requirements for robust design especially of rotating parts. Low pressure (LP) steam turbine end-stage blades with larger exhaust areas are one lever to increase the efficiency of the turbine by reduction of exhaust losses and also to realize cost-efficient single flow exhaust applications. Consequently, blade steels with improved mechanical properties are required. The results of the development of a new high-strength precipitation-hardening steel for LP end-stage blade application with significantly enhanced material properties are reported. The paper covers the testing strategy applied and information on crucial material parameters like improved low cycle and high cycle fatigue behavior while keeping good stress corrosion cracking resistance and corrosion fatigue properties. Furthermore, first manufacturing experiences and validation results from a full-scale component test rig are presented.


Author(s):  
Shilun Sheng ◽  
Johan Flegler ◽  
Balazs Janos Becs ◽  
Michael Dankert

The design of steam turbine components is driven by high efficiency demands and also requirements for increased operational flexibility due to more renewable energy sources being added to the grid. Therefore, fossil power plants which operate reliably under these conditions must be designed. Robust low pressure (LP) end stage blades are one key factor for modern steam turbine design to meet current and future market requirements. In operation, LP end stage blades of steam turbines are exposed to complex mechanical load, resulting in stresses mainly due to blade vibration and high centrifugal forces. Design methods accounting for high cycle fatigue (HCF) and low cycle fatigue (LCF) are required for fatigue lifetime calculation. To determine the HCF component strength and to validate the calculation procedure, an HCF component test facility for full-scale LP end stage blades has recently been established at Siemens. Besides the validation of the calculation procedures, the full-scale component tests serve as part of upfront validation to minimize risk for first time implementation of newly developed as well as next generation blades, and to demonstrate operational robustness of the existing fleet. This paper describes the development and setup of the HCF component test facility for full-scale LP end stage blades at Siemens, the successful execution of HCF component tests with blades of different sizes, surface conditions and materials, and the evaluation of the results. In addition, crack growth and threshold behavior has been investigated in detail. Based on the test results, validation of the corresponding calculation methods has been performed. An outlook on further development of test facilities is provided.


2004 ◽  
Vol 53 (12) ◽  
pp. 568-575 ◽  
Author(s):  
Masayoshi Hirano ◽  
Yoshihiro Koike ◽  
Takao Minami ◽  
Li-Bin Niu ◽  
Hiroshi Takaku

Author(s):  
Aleksei Dolganov ◽  
Alexander Nekrasov

Modern large capacity steam turbine for fossil power plants should have a high efficiency to be competitive in today’s tough market. It should be compact, with a smaller mass for reducing cost. In these circumstances, an effective solution is to create a large capacity steam turbine that consists of integrated high-intermediate-pressure turbine (HIPT) and one low-pressure turbine (LPT). Greater heat drop as compared to a conventional turbine shall be provided in LPT of such steam turbine. With this rather high efficiency of the low-pressure turbine should be provided. The performance of LPT depends not only on the efficiency of trans- and supersonic stages, but also on the efficiency of subsonic upstream stages. At a time when the overall heat drop in the low-pressure turbine is increased, role of the upstream subsonic stages also increases, provided that the design of stages L-0 and L-1 is maintained. This paper presents results of numerical simulation of an optimized subsonic stages section for a new low-pressure steam turbine. Simulation results of a conventional subsonic stages section are presented for comparison. Stages of the optimized subsonic section have a number of features: increased disposable heat drop, enlarged relative pitch, spline representation of sections of blade profiles, 3D airfoil design. The comparison of normalized integral basic characteristics, plots of the main parameters on the blade height, diagrams of the normalized pressure in individual cylindrical sections is given for optimized and conventional cases.


Author(s):  
Roger E. Anderson ◽  
Scott MacAdam ◽  
Fermin Viteri ◽  
Daniel O. Davies ◽  
James P. Downs ◽  
...  

Future power plants will require some type of carbon capture and storage (CCS) system to mitigate carbon dioxide (CO2) emissions. The most promising technologies for CCS are: oxy-fuel (O-F) combustion, pre-combustion capture, and post-combustion capture. This paper discusses the recent work conducted by Siemens Power Generation, Florida Turbine Technologies, Inc. (FTT) and Clean Energy Systems, Inc. (CES) in adapting high temperature gas turbines to use CES’s drive gases in high-efficiency O-F zero emission power plants (ZEPPs). CES’s O-F cycle features high-pressure combustion of fuel with oxygen (O2) in the presence of recycled coolant (water, steam or CO2) to produce drive gases composed predominantly of steam and CO2. This cycle provides the unique capability to capture nearly pure CO2 and trace by-products by simple condensation of the steam. An attractive O-F power cycle uses high, intermediate and low pressure turbines (HPT, IPT and LPT, respectively). The HPT may be based on either current commercial or advanced steam turbine technology. Low pressure steam turbine technology is readily applicable to the LPT. To achieve high efficiencies, an IPT is necessary and efficiency increases with inlet temperature. The high-temperature IPT’s necessitate advanced turbine materials and cooling technology. O-F plants have an abundance of water, cool steam ∼200°C (400°F) and CO2 that can be used as cooling fluids within the combustor and IPT systems. For the “First Generation” ZEPP, a General Electric J79 turbine, minus the compressor, to be driven directly by CES’s 170 MWt high-pressure oxy-fuel combustor (gas generator), has been adapted. A modest inlet gas temperature of 760°C (1400°F) was selected to eliminate the need for turbine cooling. The J79 turbine operating on natural gas delivers 32 MWe and incorporates a single-stage free-turbine that generates an additional 11 MWe. When an HPT and an LPT are added, the net output power (accounting for losses) becomes 60 MWe at 30% efficiency based on lower heating value (LHV), including the parasitic loads for O2 separation and compression and for CO2 capture and compression to 151.5 bar (2200 psia). For an inlet temperature of 927°C (1700°F), the nominal value, the net output power is 70 MWe at 34% efficiency (LHV). FTT and CES are evaluating a “Second Generation” IPT with a gas inlet temperature of 1260°C (2300°F). Predicted performance values for these plants incorporating the HPT, IPT and the LPT are: output power of approximately 100–200 MWe with an efficiency of 40 to 45%. The “Third Generation” IPT for 2015+ power plants will be based on the development of very high temperature turbines having an inlet temperature goal of 1760°C (3200°F). Recent DOE/CES studies project such plants will have LHV efficiencies in the 50% range for natural gas and HHV efficiencies near 40% for gasified coal.


Author(s):  
R Sigg ◽  
C Heinz ◽  
M V Casey ◽  
N Sürken

Modern steam power plants must operate safely at extremely low loads, known as windage, in which the low pressure (LP) turbine runs with decreased or even zero flow. Windage is characterized by a strongly unsteady three-dimensional (3D) flow field leading to possible aerodynamic excitations. Extensive flow field measurements were performed in an LP steam turbine test rig during windage, using pneumatic probes in the last stage and a diffuser. The flow field of the whole turbine was also calculated with steady 3D computational fluid dynamics (ANSYS CFX). Good agreement is found between the simulations and the measurements of the flow field, and the characteristic vortex structures behind the last rotor row are captured. The numerically predicted trends of power output, pressure ratio, and temperature of the last turbine blade row closely match the experimental data. The complex vortex flow in the stage is interpreted using both numerical and experimental results.


2021 ◽  
Author(s):  
Bertold Lübbe ◽  
Jens Aschenbruck ◽  
Oliver Pütz ◽  
Mira Theidel

Abstract To meet today’s and future market needs, large end-stage blades are obliged to fulfill high flexibility regarding the operational range and high efficiency goals while being prepared for daily start-stop cycles. The end-stage total efficiency can be maximized by enlarging the steam turbine exhaust area and thereby reducing the exhaust losses. Therefore, a new Low Pressure (LP) backend featuring an increased freestanding 41″ steel blade has been developed and is presented here, which is optimized for maximum efficiency over a wide range of operation conditions. To allow for such a large steel-blade to operate at 60Hz rotational speed and to meet the daily cycling demand, various aspects of the blade design were optimized. A new high strength blade steel was developed (Teuber [1]), which gives the designer freedom for aerodynamical optimizations, while keeping the mechanical utilization within the predefined, allowable limits. To maximize the cycling capability, a new fir tree root was developed which minimizes the static as well as the dynamic loading. To verify the success of the new fir-tree root design and to verify the natural frequencies for the relevant modes, an extensive validation measurement campaign was setup with a full-scale blade row in a spin-pit. Here, the airfoil, root and steeple of the end-stage blade were equipped with strain gauges. Additionally, the blade row was monitored using tip-timing sensors. The results of this validation measurement campaign are presented in this paper. They show a close agreement between the design calculations and the measured static strains and vibration responses in terms of natural frequencies as well as displacement and strain amplitudes. Additionally, a test turbine has been set-up featuring a direct scaling of the new LP backend with the new high strength steel and a pre-stage to simulate realistic operation conditions over the complete operation range. The blade performance was tested up to high mass-flows, condenser pressures of up to 300 mbar and at varying load points covering all potential load points from extreme part load to full load with minimal and maximal condenser pressure. Strain gauges as well as tip-timing are used to measure the vibration response of the end-stage blade during the measurement campaign. The results presented here show, that throughout the complete measurement campaign the blade experienced minimal excitation which led to vibration levels that allowed unrestricted operation in the complete, tested operation range. In summary this paper shows the main design features of a large full-speed freestanding end-stage blade and the validation measures that were performed to ensure that the design targets and the market requirements are fully met.


Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 8-15
Author(s):  
Arkadiy E. Zariankin ◽  
◽  
Sergey К. Osipov ◽  
Vladislav I. Krutitsky ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document