Design and Validation of a Large Steam Turbine End-Stage Blade to Meet Current and Future Market Demands

2021 ◽  
Author(s):  
Bertold Lübbe ◽  
Jens Aschenbruck ◽  
Oliver Pütz ◽  
Mira Theidel

Abstract To meet today’s and future market needs, large end-stage blades are obliged to fulfill high flexibility regarding the operational range and high efficiency goals while being prepared for daily start-stop cycles. The end-stage total efficiency can be maximized by enlarging the steam turbine exhaust area and thereby reducing the exhaust losses. Therefore, a new Low Pressure (LP) backend featuring an increased freestanding 41″ steel blade has been developed and is presented here, which is optimized for maximum efficiency over a wide range of operation conditions. To allow for such a large steel-blade to operate at 60Hz rotational speed and to meet the daily cycling demand, various aspects of the blade design were optimized. A new high strength blade steel was developed (Teuber [1]), which gives the designer freedom for aerodynamical optimizations, while keeping the mechanical utilization within the predefined, allowable limits. To maximize the cycling capability, a new fir tree root was developed which minimizes the static as well as the dynamic loading. To verify the success of the new fir-tree root design and to verify the natural frequencies for the relevant modes, an extensive validation measurement campaign was setup with a full-scale blade row in a spin-pit. Here, the airfoil, root and steeple of the end-stage blade were equipped with strain gauges. Additionally, the blade row was monitored using tip-timing sensors. The results of this validation measurement campaign are presented in this paper. They show a close agreement between the design calculations and the measured static strains and vibration responses in terms of natural frequencies as well as displacement and strain amplitudes. Additionally, a test turbine has been set-up featuring a direct scaling of the new LP backend with the new high strength steel and a pre-stage to simulate realistic operation conditions over the complete operation range. The blade performance was tested up to high mass-flows, condenser pressures of up to 300 mbar and at varying load points covering all potential load points from extreme part load to full load with minimal and maximal condenser pressure. Strain gauges as well as tip-timing are used to measure the vibration response of the end-stage blade during the measurement campaign. The results presented here show, that throughout the complete measurement campaign the blade experienced minimal excitation which led to vibration levels that allowed unrestricted operation in the complete, tested operation range. In summary this paper shows the main design features of a large full-speed freestanding end-stage blade and the validation measures that were performed to ensure that the design targets and the market requirements are fully met.

Author(s):  
Shilun Sheng ◽  
Johan Flegler ◽  
Balazs Janos Becs ◽  
Michael Dankert

The design of steam turbine components is driven by high efficiency demands and also requirements for increased operational flexibility due to more renewable energy sources being added to the grid. Therefore, fossil power plants which operate reliably under these conditions must be designed. Robust low pressure (LP) end stage blades are one key factor for modern steam turbine design to meet current and future market requirements. In operation, LP end stage blades of steam turbines are exposed to complex mechanical load, resulting in stresses mainly due to blade vibration and high centrifugal forces. Design methods accounting for high cycle fatigue (HCF) and low cycle fatigue (LCF) are required for fatigue lifetime calculation. To determine the HCF component strength and to validate the calculation procedure, an HCF component test facility for full-scale LP end stage blades has recently been established at Siemens. Besides the validation of the calculation procedures, the full-scale component tests serve as part of upfront validation to minimize risk for first time implementation of newly developed as well as next generation blades, and to demonstrate operational robustness of the existing fleet. This paper describes the development and setup of the HCF component test facility for full-scale LP end stage blades at Siemens, the successful execution of HCF component tests with blades of different sizes, surface conditions and materials, and the evaluation of the results. In addition, crack growth and threshold behavior has been investigated in detail. Based on the test results, validation of the corresponding calculation methods has been performed. An outlook on further development of test facilities is provided.


Author(s):  
Thomas Gro¨nsfelder ◽  
Alexander Hofbauer ◽  
Christoph H. Richter

Large steam turbine end stage rotating blades are commonly manufactured by forging and machining to the final geometry. As in every manufacturing process certain geometric tolerances have to be granted. In particular, the allowed tolerances on the airfoil geometry do have a significant influence on the natural frequencies of the final blades. The resulting frequency scatter is appreciated in terms of mistuning the whole ring of blades, as an adequate mistuning has shown advantages under unstalled flutter conditions. An excessively large band is not acceptable, due to the fact that the blade frequencies are tuned to not-coincide with harmonic multiples of the rotor speed under stationary operation. This paper describes a theoretical method for prediction of a manufactured blade design frequency scatter, based only on nominal geometric information about the blade. Therefore, it is suited to be used during the development of a blade without having a prototype produced. The method is divided into three different steps. First, a numerical experiment is performed creating a number of geometrically modulated FE models. These models are used in a calculation of natural frequencies. Second, these frequencies serve as input for an identification of a simple algebraic representation of the frequencies. This allows a fast calculation by interpolation without the need to process the FE models. Third, the identified simplified equation is used in conjunction with different optimization algorithms for analysis of the specific design characteristics. The validity of the chosen matrix equation is shown by comparison to the FE calculations, before different blade types are investigated. Characteristics and options of the implemented optimization routines are discussed. Finally, the comparison of differently tuned blade types are used to demonstrate the capabilities of the described algorithm.


Author(s):  
N. Bachschmid ◽  
S. Bistolfi ◽  
S. Chatterton ◽  
M. Ferrante ◽  
E. Pesatori

Actual trend in steam turbine design is to use blades with integral shrouds, for high pressure and intermediate pressure steam turbine sections, as well as also for the long blades of the low pressure sections. The blades are inserted with their root into the seat on the shaft in such a way that the blades are slightly forced against each other in correspondence of the shrouds. In long blades of low pressure stages the forcing can be obtained by the untwisting of twisted blades due to the effect of the huge centrifugal forces. The dynamic behavior of these blade rows is difficult to predict due to the nonlinear effect of the contact forces and due to friction. Different models for the contact are proposed and compared. The resulting natural frequencies of the blade row as a function of the different nodal diameter mode shapes are highly depending on the assumed models. For avoiding resonant conditions with engine order excitations, the natural frequencies must be calculated with good accuracy. Some of the modes of the blade row, typically for the last stage of the low pressure steam turbine, can couple with some vibration modes of the rotor: flexural vibrations of the shaft couple with 1 nodal diameter mode shape of the row in axial direction and torsional vibrations of the shaft couple with the 0 nodal diameter mode in tangential direction. Therefore analyses of lateral and torsional vibrations of low pressure steam turbine shafts require also an accurate analysis of the blade row vibration modes.


Author(s):  
Hannes Teuber ◽  
Jochen Barnikel ◽  
Michael Dankert ◽  
Walter David ◽  
Andrei Ghicov ◽  
...  

Influenced by the growing share of Renewable Energies, higher flexibility and increased efficiency of fossil power plants as well as improved cost efficiency in production of turbine components are evident market trends. Daily cycling in turbine operations leads to advanced requirements for robust design especially of rotating parts. Low pressure (LP) steam turbine end-stage blades with larger exhaust areas are one lever to increase the efficiency of the turbine by reduction of exhaust losses and also to realize cost-efficient single flow exhaust applications. Consequently, blade steels with improved mechanical properties are required. The results of the development of a new high-strength precipitation-hardening steel for LP end-stage blade application with significantly enhanced material properties are reported. The paper covers the testing strategy applied and information on crucial material parameters like improved low cycle and high cycle fatigue behavior while keeping good stress corrosion cracking resistance and corrosion fatigue properties. Furthermore, first manufacturing experiences and validation results from a full-scale component test rig are presented.


Author(s):  
Hannes Teuber ◽  
Jochen Barnikel ◽  
Michael Dankert ◽  
Walter David ◽  
Andrei Ghicov ◽  
...  

Influenced by the growing share of Renewable Energies, higher flexibility and increased efficiency of fossil power plants as well as improved cost efficiency in production of turbine components are evident market trends. Daily cycling in turbine operations leads to advanced requirements for robust design especially of rotating parts. Low pressure (LP) steam turbine end-stage blades with larger exhaust areas are one lever to increase the efficiency of the turbine by reduction of exhaust losses and also to realize cost-efficient single flow exhaust applications. Consequently, blade steels with improved mechanical properties are required. The results of the development of a new high-strength precipitation-hardening (PH) steel for LP end-stage blade application with significantly enhanced material properties are reported. The paper covers the testing strategy applied and information on crucial material parameters like improved low cycle and high cycle fatigue (HCF) behavior while keeping good stress corrosion cracking (SCC) resistance and corrosion fatigue (CF) properties. Furthermore, first manufacturing experiences and validation results from a full-scale component test rig are presented.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Simon Hecker ◽  
Peter Dumstorff ◽  
Henning Almstedt ◽  
...  

The demand for energy is increasingly covered through renewable energy sources. As a consequence, conventional power plants need to respond to power fluctuations in the grid much more frequently than in the past. Additionally, steam turbine components are expected to deal with high loads due to this new kind of energy management. Changes in steam temperature caused by rapid load changes or fast starts lead to high levels of thermal stress in the turbine components. Therefore, todays energy market requires highly efficient power plants which can be operated under flexible conditions. In order to meet the current and future market requirements, turbine components are optimized with respect to multi-dimensional target functions. The development of steam turbine components is a complex process involving different engineering disciplines and time-consuming calculations. Currently, optimization is used most frequently for subtasks within the individual discipline. For a holistic approach, highly efficient calculation methods, which are able to deal with high dimensional and multidisciplinary systems, are needed. One approach to solve this problem is the usage of surrogate models using mathematical methods e.g. polynomial regression or the more sophisticated Kriging. With proper training, these methods can deliver results which are nearly as accurate as the full model calculations themselves in a fraction of time. Surrogate models have to face different requirements: the underlying outputs can be, for example, highly non-linear, noisy or discontinuous. In addition, the surrogate models need to be constructed out of a large number of variables, where often only a few parameters are important. In order to achieve good prognosis quality only the most important parameters should be used to create the surrogate models. Unimportant parameters do not improve the prognosis quality but generate additional noise to the approximation result. Another challenge is to achieve good results with as little design information as possible. This is important because in practice the necessary information is usually only obtained by very time-consuming simulations. This paper presents an efficient optimization procedure using a self-developed hybrid surrogate model consisting of moving least squares and anisotropic Kriging. With its maximized prognosis quality, it is capable of handling the challenges mentioned above. This enables time-efficient optimization. Additionally, a preceding sensitivity analysis identifies the most important parameters regarding the objectives. This leads to a fast convergence of the optimization and a more accurate surrogate model. An example of this method is shown for the optimization of a labyrinth shaft seal used in steam turbines. Within the optimization the opposed objectives of minimizing leakage mass flow and decreasing total enthalpy increase due to friction are considered.


Author(s):  
Mahesh M. Bhat ◽  
V. Ramamurti ◽  
C. Sujatha

Abstract Steam turbine blade is a very complex structure. It has geometric complexities like variation of twist, taper, width and thickness along its length. Most of the time these variations are not uniform. Apart from these geometric complexities, the blades are coupled by means of lacing wire, lacing rod or shroud. Blades are attached to a flexible disc which contributes to the dynamic behavior of the blade. Root fixity also plays an important role in this behavior. There is a considerable variation in the frequencies of blades of newly assembled turbine and frequencies after some hours of running. Again because of manufacturing tolerances there can be some variation in the blade to blade frequencies. Determination of natural frequencies of the blade is therefore a very critical job. Problems associated with typical industrial turbine bladed discs of a 235 MW steam turbine are highlighted in this paper.


2020 ◽  
Vol 2020 (0) ◽  
pp. J05102
Author(s):  
Hironori MIYAZAWA ◽  
Akihiro UEMURA ◽  
Takashi FURUSAWA ◽  
Satoru YAMAMOTO ◽  
Shuichi UMEZAWA ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2062
Author(s):  
Marcin Górski ◽  
Rafał Krzywoń ◽  
Magdalena Borodeńko

The monitoring of structures is one of the most difficult challenges of engineering in the 21st century. As a result of changes in conditions of use, as well as design errors, many building structures require strengthening. This article presents research on the development of an externally strengthening carbon-fiber textile with a self-sensing option, which is an idea is based on the pattern of resistive strain gauges, where thread is presented in the form of zig-zagging parallel lines. The first laboratory tests showed the system’s high efficiency in the measurement of strains, but also revealed its sensitivity to environmental conditions. This article also presents studies on the influence of temperature and humidity on the measurement, and to separate the two effects, resistance changes were tested on unloaded concrete and wooden samples. The models were then placed in a climatic chamber, and the daily cycle of temperature and humidity changes was simulated. The research results confirmed preliminary observations of resistivity growths along with temperature. This effect is more visible on concrete samples, presumably due to its greater amount of natural humidity. The strain measurement with carbon fibers is very sensitive to temperature changes, and applications of this method in practice require compensation.


Author(s):  
M. S. Riaz ◽  
K. J. Barb ◽  
A Engeda

In this paper, a novel approach is presented to increase the operational flexibility of steam turbines. Exhaust pressure at the exit of the last-stage blades is one of the most important parameters that limit the operation of a steam turbine, especially on days with hot ambient conditions. The main concern in these off-design high-exhaust pressure operating conditions is that it can result in flow separation, which can lead to aeromechanics instabilities and thus to blade failure because of high-cycle fatigue. In the method proposed in this paper, dynamic pressure transducers are placed around the perimeter of the last-stage blade to measure the pressure variations caused by vibrating last-stage blades. This approach, which is applicable to condensing turbines only, will provide increased exhaust pressure limits through realtime monitoring of the pressure signal and thereby enable the power plant to produce more power during times of peak demand. Finite elements analysis was performed to predict the natural frequencies of the row of blades to distinguish between the synchronous and nonsynchronous modes of vibration. Strain gauges were placed on the blades to obtain the experimental frequency information of the system. Response from the dynamic pressure transducers was compared with responses from the strain gauges. An excellent agreement between the two sets of results proved the validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document