Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout

Author(s):  
Jinbo Niu ◽  
Ye Ding ◽  
Zunmin Geng ◽  
LiMin Zhu ◽  
Han Ding

The regenerative milling chatter is usually regarded as some kind of bifurcation or chaos behaviors of the machining system. Although several chatter patterns such as the secondary Hopf, the period doubling, and the cyclic fold bifurcations were once reported, their relationships with cutting conditions remain undiscovered. This paper aims to uncover the dynamic mechanism of distinct chatter behaviors in general milling scenarios. First, two complementary methods, i.e., the generalized Runge–Kutta method and the time-domain simulation technique, are presented to jointly study the distribution rule of chatter patterns in stability lobe diagrams for milling processes with general flute-spacing tools considering runout. The theoretical predictions are validated by one published example and two cutting experiments under three different cutting conditions. Furthermore, the cutting signal characteristics and cutting surface topography of distinct chatter patterns are analyzed and compared in detail. On this basis, this paper studies the joint influences of cutting parameters, tool geometries, and runout on regenerative chatter behaviors with the proposed methods.

2016 ◽  
Vol 823 ◽  
pp. 525-530
Author(s):  
Abderrahim Belloufi ◽  
Mekki Assas ◽  
Mabrouk Hecini ◽  
Imane Rezgui

In this paper, a new, optimization strategy is used for the determination of the optimum cutting parameters for multipass milling operations. This strategy is based on the “minimum production time” criterion. The optimum number of passes is determined via dynamic programming, and the optimal values of the cutting conditions are found based on the objective function developed for the typified criterion by using a hybrid genetic algorithm with SQP. GA is the main optimizer of this algorithm, whereas SQP is used to fine-tune the results obtained from the GA. Furthermore, the convergence characteristics and robustness of the proposed method have been explored through comparisons with results reported in literature. The obtained results indicate that the proposed strategy is effective compared to other techniques carried out by different researchers.


2013 ◽  
Vol 845 ◽  
pp. 708-712 ◽  
Author(s):  
P.Y.M. Wibowo Ndaruhadi ◽  
S. Sharif ◽  
M.Y. Noordin ◽  
Denni Kurniawan

Surface roughness indicates the damage of the bone tissue due to bone machining process. Aiming at inducing the least damage, this study evaluates the effect of some cutting conditions to the surface roughness of machined bone. In the turning operation performed, the variables are cutting speed (26 and 45 m/min), feed (0.05 and 0.09 mm/rev), tool type (coated and uncoated), and cutting direction (longitudinal and transversal). It was found that feed did not significantly influence surface roughness. Among the influencing factor, the rank is tool type, cutting speed, and cutting direction.


2011 ◽  
Vol 496 ◽  
pp. 138-143 ◽  
Author(s):  
Ivan Mrkvica ◽  
Ryszard Konderla ◽  
Miroslav Faktor

This article deals with dry turning of nickel superalloy - Inconel 718. The different cemented carbides were applied for cutting process. These inserts were produced by Pramet Tools Ltd. company. This paper discusses durability of cutting inserts, the different intensity of tool wear at various cutting parameters. The most suitable cutting conditions are chosen in the scope of applied tools.


2014 ◽  
Vol 974 ◽  
pp. 389-393 ◽  
Author(s):  
Sen Liu ◽  
Dong Mei Wu ◽  
Jun Zhao

In orthopedic surgery, it is easy to do harm to surrounding tissues, so the study of bone cutting is necessary. In this article, a finite element model (FEM) of orthogonal bone cutting is developed. Cutting force intra-operatively can provide the surgeon with additional on-line information to support him to control quality of cutting surface. The obtained cutting force decreased little with cutting speed increasing, but ascended evidently with cutting depth increasing. The results of finite element simulations are aimed at providing optimization of cutting parameters and the basic information for hybrid force-velocity control of a robot-assisted bone milling system.


2018 ◽  
Vol 780 ◽  
pp. 98-104
Author(s):  
Alexander Belyakov ◽  
Stanislav Mikhailov ◽  
Nikolai Kovelenov ◽  
Sergey Danilov

A technique and supporting software were designed to select optimal conditions for turning of ductile materials. Selection of optimal cutting parameters is based on a number of process requirements, including achieving the favourable chip form.


Author(s):  
Giuseppe Catania ◽  
Nicolo` Mancinelli

This study refers to the investigation on the critical operating condition occurring on high productivity milling machines, known as chatter. This phenomenon is generated by a self-excited vibration, associated with a loss of stability of the system, causing reduced productivity, poor surface finish and noise. This study consists of the theoretical and experimental modeling of machining chatter conditions, in order to develop a real-time monitoring system able to diagnose the occurrence of chatter in advance and to dynamically modify the cutting parameters for process optimization. A prototype NC 3-axis milling machine was ad hoc realized to accomplish this task. The machine was instrumented by a dynamometer table, and a series of accelerometer sensors were mounted in the proximity of the tool spindle and the workpiece. An analytical model was developed, taking into account the periodic cutting force arising during interrupted cutting operation in milling. The system dynamical behavior was described by means of a set of delay differential equations with periodic coefficients. The stability of this system was analyzed by the semi discretization approach based on the Floquet theory. Lobe stability charts were evaluated and associated with frequency diagrams. Two chatter types were analytically and experimentally detected: period-doubling bifurcations and secondary Hopf bifurcations. Measurement data were acquired and analyzed in the time and frequency domain. Several tests were conducted in a wide range of operating conditions, such as radial immersion, depth of cut and spindle speeds and using different tools. Results are reported showing agreement between the numerical analysis and the related experimental tests.


2009 ◽  
Vol 69-70 ◽  
pp. 505-509
Author(s):  
X.Y. Wang ◽  
Qing Long An ◽  
Yun Shan Zhang ◽  
H. Xu ◽  
Ming Chen

Stainless 2Cr13 is used as petroleum pipe material for its good performance in condition of high temperature, high pressure and corrosive environment. Buttress thread turning is a type of heavy machining, which has a great influence on the residual stress of workpiece. Residual stress is usually determined by cutting parameters and tool geometries. Experiments with different geometrical tools were carried out and a finite element model was used to study the influence of tool geometries on the residual stress. Experimental and simulated results showed that relatively bigger rake angle and smaller corner radius make a relatively lower tensile residual stress of workpiece surface in dry turning buttress thread.


2012 ◽  
Vol 504-506 ◽  
pp. 1335-1340 ◽  
Author(s):  
Giuseppina Ambrogio ◽  
Serena di Renzo ◽  
Francesco Gagliardi ◽  
Domenico Umbrello

This paper presents a study of the influence of cutting conditions on the finished surface obtained after an hard turning process, in particular a case study is presented where AISI 52100 bearing steel is machined under different cutting conditions. An analysis carried out using Surface Response Methodology has been developed in order to study the influence of the main cutting parameters such as cutting speed, feed rate and workpiece initial hardness on white (WL) and dark layer (DL) thickness. The whole experimental campaign has been performed using a chamfered PCBN tool inserts without any cutting fluid. Results show an evident influence of cutting speed and feed rate on both white and dark layer thickness while less relevant is the contribute given from the workpiece hardness on defining WL and DL depth. Finally, a model to find the optimal process conditions to minimize white and dark layer thickness is developed.


2012 ◽  
Vol 217-219 ◽  
pp. 2056-2059 ◽  
Author(s):  
Ivan Mrkvica ◽  
Miroslav Janoš ◽  
Petr Sysel

This article deals with milling possibilities of nickel superalloy - Inconel 718. The different cemented carbides were applied for cutting process. These inserts were produced by Pramet Tools Ltd. company. This paper discusses durability of cutting inserts, the different intensity of tool wear at various cutting parameters. The most suitable cutting conditions are chosen in the scope of applied tools.


Sign in / Sign up

Export Citation Format

Share Document