Design and Kinematic Analysis of a Novel Hybrid Kinematic Mechanism With Seven-Degrees-of-Freedom and Variable Topology for Operation in Space

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun He ◽  
Feng Gao ◽  
Qiao Sun

We propose a novel hybrid robot with seven degrees-of-freedom (DOF) and variable topology for operation in space. Design specifications of the space robot are presented for the type synthesis of hybrid mechanisms. Based on GF set theory, three design rules are given, thus providing the design method of the 7DOF hybrid space robot mechanism. Twenty-four combinations of the hybrid robotic mechanisms are obtained. The final synthesized configuration for the design of the space robot has a 3DOF parallel module and a 4DOF serial module with four revolute (RRRR) joints. The parallel module consists of a limb with universal-prismatic (UP) joints and two limbs with universal-prismatic-spherical (UPS) joints. The topology of the hybrid robot can be changed, and it will become an RPRR four-bar mechanism when it is folded for launch. The closed-form solution for the inverse displacement model is developed, and then the forward displacement equations are also obtained. After that, the Jacobian matrix is derived from the displacement model; the Jacobian matrix will analyze the singularity and workspace. We find that there are four singularities of mechanisms. The dexterous workspace of the hybrid robot is a good match for the grapple operation in space. An experiment with the prototype shows the present hybrid robot can grapple to a satellite-rocket docking ring and therefore validates the kinematic equations.

Author(s):  
L. Beji ◽  
M. Pascal ◽  
P. Joli

Abstract In this paper, an architecture of a six degrees of freedom (dof) parallel robot and three limbs is described. The robot is called Space Manipulator (SM). In a first step, the inverse kinematic problem for the robot is solved in closed form solution. Further, we need to inverse only a 3 × 3 passive jacobian matrix to solve the direct kinematic problem. In a second step, the dynamic equations are derived by using the Lagrangian formalism where the coordinates are the passive and active joint coordinates. Based on geometrical properties of the robot, the equations of motion are derived in terms of only 9 coordinates related by 3 kinematic constraints. The computational cost of the obtained dynamic model is reduced by using a minimum set of base inertial parameters.


Author(s):  
Ossama Abdelkhalik ◽  
Shangyan Zou ◽  
Rush Robinett ◽  
Giorgio Bacelli ◽  
David Wilson ◽  
...  

Abstract This paper presents a solution to the optimal control problem of a three degrees-of-freedom (3DOF) wave energy converter (WEC). The three modes are the heave, pitch, and surge. The dynamic model is characterized by a coupling between the pitch and surge modes, while the heave is decoupled. The heave, however, excites the pitch motion through nonlinear parametric excitation in the pitch mode. This paper uses Fourier series (FS) as basis functions to approximate the states and the control. A simplified model is first used where the parametric excitation term is neglected and a closed-form solution for the optimal control is developed. For the parametrically excited case, a sequential quadratic programming approach is implemented to solve for the optimal control numerically. Numerical results show that the harvested energy from three modes is greater than three times the harvested energy from the heave mode alone. Moreover, the harvested energy using a control that accounts for the parametric excitation is significantly higher than the energy harvested when neglecting this nonlinear parametric excitation term.


Robotica ◽  
2008 ◽  
Vol 26 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Hyeung-Sik Choi ◽  
Gyu-Deuk Hwang ◽  
Sam-Sang You

SUMMARYThis paper presents analysis and experimental verifications of a new robot manipulator with five degrees of freedom developed for the buffing operation of shoes. First, the forward and inverse kinematics are analyzed. Next, an analytic closed-form solution is rigorously derived for the joint angles corresponding to the position and orientation of the end-effector in Cartesian coordinates. A control system, including input/output interfaces and the related electronic system, is designed for the control of the mechanical structure of the buffing robot. Then, peripheral systems integrated with the conveyer, transfer device, and fixture device are designed for the sequential buffing process of shoes. Also, a graphic user interface (GUI) program including the forward/inverse kinematics, control algorithm, and communication program to interact the robot with the peripheral systems is developed by using visual C++ language. A new flexible toolholder (FTH) is proposed to compensate for the excessive applied force between deburring tools and shoes. Finally, the test results are provided to demonstrate the effectiveness of the proposed scheme.


2021 ◽  
Author(s):  
Mahdi Ardestani ◽  
Mohsen Asgari

Abstract During chest compressions action, in CPR (CPR), the 2 arms of the rescuer constitute a parallel mechanism. Inspired by this performance, during this study a specific family of lower mobility parallel manipulators by employing a modified version of Delta robot is proposed for chest compressions in rescuing a patient. One of the biggest differences between this mechanism and the Delta parallel mechanism is that the position of the three active connections of the robot relative to each other has changed the geometry of the platforms. Also, it shapes the asymmetrical structure within the robot mechanism and its workspace. Another difference is due to the architectural optimization method considering the mixed performance index, which has been used during this mechanism to achieve a much better compromise between the manipulator dexterity and its workspace. Within the present paper, after introducing the architecture of the robot, a closed-form solution is developed for the kinematic problem and therefore the results are verified using MSC. Adams©. Then Jacobian matrix is generated to gauge the singularity problem of the proposed mechanism. then, the workspace of the robot is investigated and compared with the original Delta mechanism.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Jesus H. Tinajero-Campos

This work reports on the kinematic analysis of a planar parallel manipulator endowed with a configurable platform assembled with six terminal links serially connected by means of revolute joints. This topology allows the robot manipulator to dispose of three relative degrees of freedom owing to the mobility of an internal closed-loop chain. Therefore, the proposed robot manipulator can admit three end-effectors. The forward displacement analysis of the configurable planar parallel manipulator is easily achieved based on unknown coordinates denoting the pose of each terminal link. Thereafter, the analysis leads to twelve quadratic equations which are numerically solved by means of the Newton homotopy method. Furthermore, a closed-form solution is available for the inverse position analysis. On the contrary, the instantaneous kinematics of the robot manipulator is investigated by means of the theory of screws. Numerical examples are included with the purpose to illustrate the method of kinematic analysis.


Robotica ◽  
1988 ◽  
Vol 6 (4) ◽  
pp. 299-309 ◽  
Author(s):  
Kesheng Wang ◽  
Terje K. Lien

SUMMARYIn this paper we show that a robot manipulator with 6 degrees of freedom can be separated into two parts: arm with the first three joints for major positioning and wrist with the last three joints for major orienting. We propose 5 arms and 2 wrists as basic construction for commercially robot manipulators. This kind of simplification can lead to a general algorithm of inverse kinematics for the corresponding configuration of different combinations of arm and wrist. The approaches for numerical solution and closed form solution presented in this paper are very efficient and easy for calculating the inverse kinematics of robot manipulator.


2004 ◽  
Vol 127 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Y. Halevi ◽  
C. A. Morales ◽  
D. J. Inman

The paper describes a method of combined expansion and orthogonalization (CEO) of experimental modeshapes. Most model updating and error localization methods require a set of full length, orthogonal with respect to the mass matrix, eigenvectors. In practically every modal experiment, the number of measurements is less than the order of the model, and hence modeshape expansion, i.e., adding the unmeasured degrees of freedom, is required. This step is then followed by orthogonalization with respect to the mass matrix. Most current methods use two separate steps for expansion and orthogonalization, each one optimal by itself, but their combination is not optimal. The suggested method combines the two steps into one optimization problem for both steps, and minimizes a quadratic criterion. In the case of an equal number of analytical and experimental modeshapes, the problem coincides with the Procrustes problem and has a closed form solution. Otherwise the solution involves nonlinear equations. Several examples show the advantage of CEO, especially in cases where the measurements are limited either in number or in space, i.e., not spanned through the entire structure.


2013 ◽  
Vol 455 ◽  
pp. 533-538
Author(s):  
Edris Farah ◽  
Shao Gang Liu

Since robots began to inter the medical fields, more research efforts and more attention have been given to this kind of robots. In this paper six degrees of freedom surgical robot was studied. The Denavit-Hartenberg parameters of the robot have been computed and 3D model has been built by using open source robotics toolbox. The paper also discussed a closed form solution for the inverse kinematics problem by using inverse kinematic decoupling method.


2019 ◽  
Vol 9 (20) ◽  
pp. 4365 ◽  
Author(s):  
Wang Shanda ◽  
Luo Xiao ◽  
Luo Qingsheng ◽  
Han Baoling

This study proposes a method for judging the existence of closed-form inverse kinematics solutions based on the Denavit–Hartenberg (DH) model. In this method, serial robots with closed-form solutions are described using three types of sub-problems from the viewpoint of solving algebraic equations. If a serial robot can be described using these three types of sub-problems, i.e., if the inverse kinematics problems can be solved by several basic problems, then there is a closed-form solution. Based on the above method, we design a set of universal closed-form inverse kinematics solving algorithms. Since there is a definite formula solution for the three types of sub-problems, the joint angles can be rapidly determined. In addition, because the DH parameters can directly reflect the linkage of the robot, the judgment of the sub-problems is also quick and accurate. More importantly, the algorithm can be applied to serial robots with low degrees of freedom. This enables the algorithm to not only quickly and accurately solve inverse kinematics problems but also to exhibit high universality. This proposed theory improves the existence conditions for closed-form reverse solutions and further promotes the development of motion control techniques for serial robots.


2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Pedro Araujo-Gómez ◽  
Vicente Mata ◽  
Miguel Díaz-Rodríguez ◽  
Angel Valera ◽  
Alvaro Page

This paper proposes a two translational and two rotational (2T2R) four-degrees-of-freedom (DOF) parallel kinematic mechanism (PKM) designed as a knee rehabilitation and diagnosis mechatronics system. First, we establish why rehabilitation devices with 2T2R motion are required, and then, we review previously proposed parallel mechanisms with this type of motion. After that, we develop a novel proposal based on the analysis of each kinematic chain and the Grübler–Kutzbach criterion. Consequently, the proposal consists of a central limb with revolute-prismatic-universal (RPU) joints and three external limbs with universal-prismatic-spherical (UPS) joints. The Screw theory analysis verifies the required mobility of the mechanism. Also, closed-loop equations enable us to put forward the closed-form solution for the inverse-displacement model, and a numerical solution for the forward-displacement model. A comparison of the numerical results from five test trajectories and the solution obtained using a virtual prototype built in msc-adams shows that the kinematic model represents the mechanism's motion. The analysis of the forward-displacement problem highlights the fact that the limbs of the mechanism should be arranged asymmetrically. Moreover, the Screw theory makes it possible to obtain the Jacobian matrix which provides insights into the analysis of the mechanism's workspace. The results show that the proposed PKM can cope with the required diagnosis and rehabilitation task. The results provide the guidelines to build a first prototype of the mechanism which enables us to perform initial tests on the robot.


Sign in / Sign up

Export Citation Format

Share Document