Event-Based Production Control for Energy Efficiency Improvement in Sustainable Multistage Manufacturing Systems

Author(s):  
Yang Li ◽  
Jun-Qiang Wang ◽  
Qing Chang

There has been an increasing trend for manufacturers to shift toward sustainable manufacturing strategies in response to an ever-growing pressure from fluctuating energy price and environmental crisis. Reducing energy consumption is considered as an important step to achieve the sustainability of a production system. This paper proposes an event-based control methodology to improve the production energy efficiency through strategically switching appropriate stations to energy saving mode. Based on an event-based analysis of production dynamics, an analytical approach is developed to quantitatively predict the system level production loss resulted from an energy saving control event (ESCE). A genetic-based control algorithm is proposed to balance the trade-off between the gain from energy saving and the expense of throughput loss. The energy improvement analysis results in a fundamental understanding of production energy dynamics and a significant decrease of energy cost for a manufacturing facility. Numerical case studies are performed to validate the effectiveness of the proposed method. It is found that the control method can effectively reduce energy cost, while only slightly impacting production.

Author(s):  
Zeyi Sun ◽  
Stephan Biller ◽  
Fangming Gu ◽  
Lin Li

Due to rapid consumption of world’s fossil fuel resources and impracticality of large-scale application and production of renewable energy, the significance of energy efficiency improvement of current available energy modes has been widely realized by both industry and academia. A great deal of research has been implemented to identify, model, estimate, and optimize energy efficiency of single-machine manufacturing system [1–5], but very little work has been done towards achieving the optimal energy efficiency for a typical manufacturing system with multiple machines. In this paper, we analyze the opportunity of energy saving on the system level and propose a new approach to improve energy efficiency for sustainable production systems considering the fact that more and more modern machines have multiple power states. Numerical case based on simulation model of an automotive assembly line is used to illustrate the effectiveness of the proposed approach.


Author(s):  
Xufeng Yao ◽  
Zeyi Sun ◽  
Lin Li ◽  
Hua Shao

The expenses associated with maintenance activities and energy consumption account for a large portion of the total operation cost in manufacturing plants. Therefore, effective methods that can be used for smart maintenance decision-making and energy management to reduce the costs of these two sections and improve the competitiveness of manufacturing enterprise are of high interests to industry. Many efforts focusing on maintenance decision-making and energy management have been dedicated. However, most of the existing research focusing on these two topics has been conducted separately, very little work has been done from a joint perspective that considers the benefits from both manufacturing machine reliability improvement and energy cost reduction. In this paper, a joint maintenance and energy management method is proposed to identify the maintenance actions considering energy cost as well as other equipment health metrics. A numerical case based on a section of an automotive assembly line is used to illustrate the potential benefits of the proposed approach.


Author(s):  
N.Sujith Prasanna ◽  
Dr.J.Nagesh Kumar

Energy cost is significant in many of the manufacturing activities. The efficiency of energy use is quiet low as there are substantial visible and hidden losses. Visible losses can be easily identified and corrective action can be taken. However hidden and indirect losses form a sizeable portion of the losses. Identifying these losses is not easy and requires an integrated approach which includes thorough study of process, operations and their interactions with energy use. Industries across sectors have implemented lean management principles which target various wastes occurring in the plant. This paper discusses case studies which highlight the exploitation of lean tools as a means for unearthing hidden energy saving potential that often go unnoticed. In addition to the energy savings which results in improved profits and competitiveness, the approach also aids the industry to pursue a path of sustainable manufacturing.


Author(s):  
Yong Wang ◽  
Lin Li

This paper proposes a framework for addressing challenges of joint production and energy modeling of sustainable manufacturing systems. The knowledge generated is used to improve the technological readiness of manufacturing enterprises for the transition towards sustainable manufacturing. Detailed research tasks of the framework are on the modeling of production, energy efficiency, electricity demand, cost, and demand response decision making. Specifically, the dynamics and performance measures of general manufacturing systems with multiple machines and buffers are modeled to integrate energy use into system modeling. The expressions of electrical energy efficiency and cost are then established based on the electricity pricing profile. Finally, joint production and energy scheduling problem formulations and the solution technique are discussed. New insights are acquired based on the applications of the established model in system parameter selection, rate plan switching decision making, and demand response scheduling. Appropriate implementation of this research outcome may lead to energy-efficient, demand-responsive, and cost-effective operations and thus improve the sustainability of modern manufacturing systems.


Author(s):  
Yuriy Usynin ◽  
Dmitry Sychev ◽  
Nikita Savosteenko

This paper considers issues related to increasing energy efficiency in electric drives of pilger rolling mills, presenting kinematics of such mills, provides justification for the general load chart, presents the detailed review of reference materials on technical energy saving solutions, and suggests a math model of an electric drive with a field regulated reluctance machine. The paper suggests key methods of saving energy in electric drives of pilger mills, namely: kinematic scheme improvement; main energy drainers and ways of energy loss reduction in electric drives with direct- and alternate-current motors, energy-saving electric drive control profiles. The article compares energy-saving resources in electric drives with various-type motors (direct-current motors, synchronous motors, and field regulated reluctance machine), clarifies the scheme of energy-saving resource implementation, provides the qualitative evaluation of electric drive control method efficiency. The accent is made on high energy efficiency of the proportionate control of armature and excitation circuits and across the range of torque in electric drives of abruptly-variable-load mills. The highest economic effect is reached in the electric drive with a field regulated reluctance machine – by means of implementing the energy-efficient electromechanical converter and applying energy-saving control profiles.


2020 ◽  
Vol 11 (5) ◽  
pp. 1251
Author(s):  
Kaparov Nurtaza MARATOVICH ◽  
Zhibek OMARKHANOVA ◽  
Rakhisheva Aida BEKARYSOVNA ◽  
Saulebaevna Saule SAPARBAYEVA ◽  
Zakirova Dilnara IKRAMKHANOVNA ◽  
...  

The relevance of the research topic is that energy-saving is the key element of modern energy development in the country. In Kazakhstan, energy-saving, and improving the energy efficiency of agriculture is currently a priority task that will solve energy, environmental and economic problems. Without a solution to these problems, the country's development will inevitably hold back. The head of state in the field of energy conservation has set a goal to reduce the energy intensity of the gross domestic product by at least 25% by 2020, and annual energy-savings of 3.5% after 2020. Industry in rural areas consumes more than 70 % of all electricity. As part of the comprehensive plan, their energy audit was conducted 50/50 (50 % of the financing is the enterprises' funds, the remaining 50 % is the state budget). As a result of the energy audit, systematic measures were developed to reduce the energy intensity of the industry, including the electric power industry. Large unproductive losses of energy resources are in the private sector, in this connection, since 2019, the energy audit of JSC "Kazakhstan center for modernization and development of housing and communal services (housing and communal services)" is conducted on budget funds in the private sector. Energy conservation is one of the most important and strategic tasks of the country. Rapidly developing production requires additional energy costs. This is confirmed by the annual increase in energy tariffs. In turn, resources are not unlimited, and their irrational consumption will inevitably lead to not only economic but also to an environmental crisis.


Author(s):  
Zhengyi Song ◽  
Young Moon

CyberManufacturing System is an advanced vision for future manufacturing where physical components are fully integrated and seamlessly networked with computational processes, forming an on-demand, intelligent, and communicative manufacturing resource and capability repository with optimal and sustainable manufacturing solutions. The CyberManufacturing System utilizes recent developments in Internet of things, cloud computing, fog computing, service-oriented technologies, among others. Manufacturing resources and capabilities can be encapsulated, registered, and connected to each other directly or through the Internet, thus enabling intelligent behaviors of manufacturing components and systems such as self-awareness, self-prediction, self-optimization, and self-configuration. This research presents an introduction to the CyberManufacturing System, establishing the architecture and functions of the CyberManufacturing System, designing the pivotal control strategy, and investigating the performance analysis of the CyberManufacturing System using modeling and simulation techniques. In total, five component-level examples and one system-level case study have been developed and used for illustration and validation of the CyberManufacturing System operations. The results show that the CyberManufacturing System is superior to other types of manufacturing systems in terms of functionality and cooperative performance.


Author(s):  
Yang Li ◽  
Qing Chang ◽  
Xiaoning Jin ◽  
Jun Ni

To improve energy efficiency is becoming more and more critical for manufacturing enterprises because of the rising energy costs, increased global competitiveness, environmental concern and more government regulations. Production control has been considered as one of the most cost-effective methods to achieve the goal. This paper discusses the energy saving opportunities in a multistage manufacturing system through strategically shut down machines to reduce their running time. We start from the investigation on what is the longest time that machines can be shut down or turn to energy saving mode without affecting system production. Then, energy opportunity windows (EOWs) of machines are defined. A Markov chain model is developed to estimate the EOWs. A case study is conducted to demonstrate the proposed model and its potential on energy saving in multistage manufacturing systems.


2020 ◽  
Vol 15 (3) ◽  
pp. 351-355
Author(s):  
Dongmei Li

Abstract In order to reduce the cost of central air conditioning, we need to reduce its energy consumption. This paper briefly introduced Internet of Things and the energy-saving and comfort monitoring system of central air conditioning based on the Internet of Things. The system took comfort degree as constraint and energy efficiency as objective to control energy saving of central air conditioning. Company X in Guanghan, Sichuan, China, was taken as an example for analysis. The system was compared with the energy-saving control system which took temperature and power as constraints. Compared with before the energy-saving control, the proportion of air conditioning downtime in the working hours of employees increased after the implementation of the two kinds of energy-saving control systems, and the proportion of downtime under the energy-saving control system designed in this study was larger; in addition, after the control of the two kinds of energy-saving systems, the energy efficiency of the air conditioning significantly improved, and the air conditioning under the control of the energy-saving system proposed in this study had more improvement in energy efficiency and higher energy-saving efficiency. The energy-saving control method proposed in this study can effectively reduce the power consumption of the central air conditioning in the office.


2019 ◽  
Vol 6 (2) ◽  
pp. 237-249 ◽  
Author(s):  
Kaizhou Gao ◽  
Yun Huang ◽  
Ali Sadollah ◽  
Ling Wang

Abstract Recently, many manufacturing enterprises pay closer attention to energy efficiency due to increasing energy cost and environmental awareness. Energy-efficient scheduling of production systems is an effective way to improve energy efficiency and to reduce energy cost. During the past 10 years, a large amount of literature has been published about energy-efficient scheduling, in which more than 50% employed swarm intelligence and evolutionary algorithms to solve the complex scheduling problems. This paper aims to provide a comprehensive literature review of production scheduling for intelligent manufacturing systems with the energy-related constraints and objectives. The main goals are to summarize, analyze, discuss, and synthesize the existing achievements, current research status, and ongoing studies, and to give useful insight into future research, especially intelligent strategies for solving the energy-efficient scheduling problems. The scope of this review is focused on the journal publications of the Web of Science database. The energy efficiency-related publications are classified and analyzed according to five criteria. Then, the research trends of energy efficiency are discussed. Finally, some directions are pointed out for future studies.


Sign in / Sign up

Export Citation Format

Share Document