A Computationally Efficient Computer-Aided Design Strategy for Iterative Combat Helmet Design and Analysis

Author(s):  
Robert Saunders ◽  
Alex Moser ◽  
Peter Matic

Assessing combat helmet ballistic performance is a costly endeavor using either an experimental or a computational process. Experimental assessment requires many iterations and helmets to acquire a sufficient data set. To circumvent this, computational simulation is incorporated into the design process to supplement a few experiments. However, due to the complex constitutive response of the helmet (anisotropic elasticity, plasticity, damage initiation and evolution, and failure), it is computationally costly to run many ballistic impact simulations. The goal of this work is to develop a computer-aided design (cad) software to rapidly analyze combat helmets undergoing a ballistic impact. The software considers a representative mix of potential threats, helmet geometry modifications and additions, brain functional anatomy, and injury considerations. The resulting software demonstrates that a given helmet can be analyzed in a matter of minutes on a standard desktop computer and parametric studies can be completed in a matter of hours. The results of the cad software show how helmet design parameters such as helmet shell materials, geometry, and ceramic appliques all affect helmet ballistic performance.

2011 ◽  
Vol 130-134 ◽  
pp. 504-507 ◽  
Author(s):  
Li Hong Zhu ◽  
Han Zhao ◽  
Xiao Chen Yin ◽  
Li Jun Zhu ◽  
Liang Zhang

Nowadays, the development of automotive industry trends more personalized and profuse product alternatives. Kansei Engineering has been applied to interior design for customer satisfaction based on ergonomic technology in the paper. The computer aided design automotive interior system includes two subsystems: one is Computer-aided Sensation Survey Subsystem and the other is Computer-aided Automobile Interior Design Subsystem. Mathematical statistics and quantitative analysis method are adopted to establish quantified relationship between product perceptual image and design parameters.


1970 ◽  
Vol 92 (3) ◽  
pp. 657-666 ◽  
Author(s):  
S. Fujii ◽  
M. F. DeVries ◽  
S. M. Wu

In Part II, a computer program that aids in the design of a twist drill is described, based on the analysis presented in Part I. A true drill and a “computer-designed” drill having identical design and grinding parameters are compared in orthogonal cutting planes. The effects of the design parameters on drill geometry are investigated utilizing the computer program.


2014 ◽  
Vol 1033-1034 ◽  
pp. 1327-1330 ◽  
Author(s):  
V.I. Syryamkin ◽  
E.N. Bogomolov ◽  
M.S. Kutsov

The article is to study the development of computer-aided design of X-ray microtomography - the device for investigating the structure and construction three-dimensional images of organic and inorganic objects on the basis of shadow projections. This article provides basic information regarding CAD of X-ray microtomography and a scheme consisting of three levels. The article also shows basic relations of X-ray computed tomography, the generalized scheme of a X-ray microtomographic scanner. The methods of X-ray imaging of the spatial microstructure and morphometry of materials are described. The main characteristics of an X-ray microtomographic scanner, the X-ray source, X-ray optical elements and mechanical components of the positioning system are shown. The block scheme and software functional scheme for intelligent neural network system of analysis of the internal microstructure of objects are presented. The method of choice of design parameters of CADof X-raymicrotomography is aimed at improving the quality of design and reduce of costs of it. It is supposed to reduce the design time and eliminate the growing number of engineers involved in development and construction of X-ray microtomographic scanners.


1989 ◽  
Vol 111 (2) ◽  
pp. 285-289 ◽  
Author(s):  
C. S. Jog ◽  
S. S. Pande

This paper presents the design strategy for the Computer-Aided Design (CAD) of compact helical gear sets. Using optimization techniques, fundamental gear design parameters such as the number of teeth on the pinion, helix angle, and diametral pitch (or module) are selected subject to constraints on bending stresses, contact stresses, and involute interference limits for both standard and nonstandard gearing. The CAD procedure is illustrated with the help of a design example.


2018 ◽  
pp. 30-34
Author(s):  
A. P. Konovalchik ◽  
O. A. Plaksenko ◽  
A. O. Schiriy

JSC Almaz-Antey in the implementation of the integrated design of complex electronic systems, particularly radar systems, it is required to solve the problem of choosing and optimizing the design parameters of radar devices, including antenna systems, transmitter-receiver paths of radar systems (radar), algorithms and devices for digital generation and processing of radar signals, and radar systems in General. Currently there is no domestic computer-aided design systems that solve these tasks in the complex. Therefore, to solve such problems, the Concern’s enterprises are used by a number of disparate software solutions with their own development and their foreign counterparts. Due to the restrictions caused by the sanctions, the closed scope of the work, as well as in import substitution, highly relevant is the creation of CAD radar, allowing to solve the above problems in a continuous end-to-end loop design. The development of CAD radar conducted by the JSC Almaz-Antey, its subsidiaries and companies with expertise in the design of the radar, using their existing backlog. The paper shows the General architecture of a domestic computer aided design in full cycle end-to-end radar systems (facilities, stations); the concept of five levels of design in the system being developed and the basic requirements for the implementation of this concept. The specificity of the developed computer-aided design system is most pronounced in activity-based scenarios for the use of the designed product in terms of specific air and space attack and defense, and is implemented in the form of functional simulation of the fighting.


Author(s):  
D Rekow ◽  
V P Thompson

Robust dental systems obtained by computer-aided design and manufacture (CAD/CAM) have been introduced and, in parallel, the strength of the ceramic materials used in fabricating dental crowns has improved. Yet all-ceramic crowns suffer from near-surface damage, limiting their clinical success, especially on posterior teeth. Factors directly associated with CAD/CAM fabrication that contribute to the degree of damage include material selection and machining parameters and strategies. However, a number of additional factors also either create new damage modes or exacerbate subcritical damage, potentially leading to catastrophic failure of the crown. Such factors include post-fabrication manipulations in the laboratory or by the clinician, fatigue associated with natural occlusal function, and stress fields created by compliance or distortion within the supporting tooth structure and/or adhesive material holding the crown to the tooth. Any damage reduces the strength of a crown, increasing the probability of catastrophic failure. The challenge is to understand and manage the combination of competing damage initiation sites and mechanisms, limitations imposed by the demand for aesthetics, and biologically related constraints.


2008 ◽  
Vol 389-390 ◽  
pp. 205-210 ◽  
Author(s):  
Ping Zou ◽  
Xin You Li ◽  
Yu Tang ◽  
Xu Lei Yang

In this paper, a Drill Point Simulation System (DPSS) which is being developed at Northeastern University is presented. By means of DPSS, the geometric models of the helical drill points were shown after inputting their design parameters. Then, the grinding parameters of the helical drill points were produced. According to the grinding parameters, the helical drill points were ground by the SD helical drill point grinder which was developed at Northeastern University. Furthermore, drilling tests were performed on aluminum sheet workpieces to investigate drilling performance of the helical drill points. In addition, the relationships between the geometric parameters of helical drill points and their grinding parameters also were derived.


1983 ◽  
Vol 105 (1) ◽  
pp. 108-112
Author(s):  
D. Nguyen ◽  
B. Kaftanoglu

In the high-speed page printing systems used as peripherals to computers, the paper moves at a speed of around 30 in./s. The printing and punching of the paper has to be done when the paper is in motion. If the punching is not finished in a short enough time, the paper would get torn up by the punchette. In a typical punch assembly as used in modern page printing systems, a plunger is driven forward by the force of a solenoid. Plunger impacts the punchette which in turn punches a hole in the paper which is in motion. To minimize the flight time of the punchette with the object of increasing paper speed, the design parameters of the punch assembly must be carefully selected. In this paper, a model for the punch assembly is developed. The necessary equations for plunger and punchette motion are derived. The design parameters, such as the masses of the plunger and punchette, constants for springs used in the assembly, force generated by the solenoid, and the gap between the plunger and punchette, are varied using a Rosenbrock algorithm to minimize the flight time of the punchette. The results obtained indicate that by the use of a Computer-Aided Design approach optimal values of design parameters can be found before the development of prototypes and experiments.


Author(s):  
Sergey Yu. Kalyakulin ◽  
Vladimir V. Kuzmin ◽  
Eduard V. Mitin ◽  
Sergey P. Suldin ◽  
Tatiana B. Tyurbeeva

Introduction. The aim of the work is to develop a mathematical model of a part based on a parametric model of graphic systems. Material and Methods.The review of the status of the question of developing a mathematical model of a part based on graphic systems showed the possibility of controlling the geometric shape of a part through the variables of a parameterized drawing. A proposal was made to use design parameterization in the calculation of the parameters of technological processes in computer-aided design systems. Results. The article establishes links between the design parameters of the part drawing and tabular values of the variables. The revealed relationships between the parameters in the drawing and the variables in the table make it possible to change the geometric shape of the part by changing the values in the variable table, i.e. the drawing is managed through the table. It is proposed to use this system of work with the parametric drawing in computer-aided design systems for calculating the parameters of technological processes. Discussion and Conclusion. The tasks solved in this article allow making a step in increasing the level of automation of parameter calculations in computer-aided design systems. The implementation of the developed methodology for constructing mathematical models of parts based on graphic systems will increase the overall level of automation of developing geometric drawings of parts. The implementation of this technique in computer-aided design systems allows automating the calculation of parameters (cutting modes, time norms, technological dimensions on transitions, etc.).


2020 ◽  
Vol 18 (1) ◽  
pp. 079
Author(s):  
Badreddine Aboulissane ◽  
Larbi El Bakkali ◽  
Jalal El Bahaoui

This paper provides workspace determination and analysis based on the graphical technique of both spatial and planar parallel manipulators. The computation and analysis of workspaces will be carried out using the parameterization and three-dimensional representation of the workspace. This technique is implemented in CAD (Computer Aided Design) Software CATIA workbenches. In order to determine the workspace of the proposed manipulators, the reachable region by each kinematic chain is created as a volume/area; afterwards, the full reachable workspace is obtained by the application of a Boolean intersection function on the previously generated volumes/areas. Finally, the relations between the total workspace and the design parameters are simulated, and the Product Engineering Optimizer workbench is used to optimize the design variables in order to obtain a maximized workspace volume. Simulated annealing (SA) and Conjugate Gradient (CG) are considered in this study as optimization tools.


Sign in / Sign up

Export Citation Format

Share Document