Effect of Underloads on Plasticity-Induced Crack Closure: A Numerical Analysis

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
F. V. Antunes ◽  
L. Paiva ◽  
R. Branco ◽  
L. P. Borrego

The effect of underloads is mostly quantified by the averaged effect on the fatigue crack growth rate, and the transient behavior is rarely investigated. The objective of this paper is to study the mechanisms behind the effect of underloads, periodic underloads, and underloads combined with overloads. A single underload smashes the material around the crack tip, producing a depression on crack flank and a local reduction of contact forces at the minimum load. The reduction of plastic elongation behind the crack tip has an immediate effect on crack opening level, which rapidly disappears with crack propagation. The smashing associated with the compressive force occurs mainly behind the crack tip position where the underload was applied. The effect of the underload is intimately linked to reversed plastic deformation, which explains its enhanced effect for kinematic hardening. The decrease of load below the minimum baseline load is the main loading parameter. The application of periodic underloads extends the effect of a single underload. The effect of the underload is enhanced by the presence of obstacles in the form of residual plastic deformation, which explains the great effect of underloads applied after overloads.

Author(s):  
Toru Osaki ◽  
Hiroshi Matsuzawa

Reconstitution in this paper means to constitute the original size compact specimen, which is made of the insert cut out from tested specimen and tubs welded to the insert. It is a promising technique to secure an adequate number of surveillance specimens for long-term operation of nuclear power plants. The fracture toughness of each reactor vessel of pressurized water reactors in Japan is measured periodically by 1/2T compact surveillance specimens, and is applied to assess the structural integrity of the reactor vessel under pressurized thermal shock loads. [1] This practice should be continued and enhanced if possible, after the full use of originally installed specimens, because its fracture toughness is lower than before. Reconstitution of irradiated 1/2T compact specimens to the original size was studied and demonstrated. Reconstituted specimens were composed of an irradiated material called an insert and un-irradiated tabs welded to the insert. It was demonstrated that the central part of the insert near the crack tip was not annealed by the thermal transient during welding if properly adjusted YAG laser welding was applied. Crack-tip opening and compliance before and after reconstitution were investigated by testing and analysis. Testing and analysis of un-irradiated specimens before reconstitution showed that the plastic deformation expanded to an area wider than 6 mm, the half width of the insert if it was a reconstituted specimen. The material had medium fracture toughness. The reconstituted specimen of the same material showed almost the same fracture toughness, although the weld could not be yielded as the insert, which could affect the crack opening. The crack opening was immune to the change of the deformation far from the crack tip. Correlation between J at 2.5 mm crack extension and plastic deformation width, and the effects of short time annealing of the insert far from the crack tip during welding were studied. Integrating the results, the conditions for reconstituting the 1/2T compact specimen were settled. The reconstituted specimen with irradiated insert designed to meet the conditions showed little change in fracture toughness.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Bing Yang ◽  
Zhanjiang Wei ◽  
Zhen Liao ◽  
Shuwei Zhou ◽  
Shoune Xiao ◽  
...  

AbstractIn the digital image correlation research of fatigue crack growth rate, the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor, thereby affecting the life prediction. This paper proposes a Gauss-Newton iteration method for solving the crack tip position. The conventional linear fitting method provides an iterative initial solution for this method, and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix. A noise-added artificial displacement field is used to verify the feasibility of the method, which shows that all parameters can be solved with satisfactory results. The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result, and the relative error between the two is only − 0.621%; The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip, and the maximum relative error with the test plastic zone area is − 11.29%. The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%. The crack tip coordinates, stress intensity factors, and plastic zone contour changes in the loading and unloading phases are explored. The results show that the crack tip change during the loading process is faster than the change during the unloading process; the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process; under the same load, the theoretical plastic zone during the unloading process is higher than that during the loading process.


1995 ◽  
Vol 409 ◽  
Author(s):  
W. C. Morrey ◽  
L. T. Wille

AbstractUsing large-scale molecular dynamics simulation on a massively parallel computer, we have studied the initiation of cracking in a Monel-like alloy of Cu-Ni. In a low temperature 2D sample, fracture from a notch starts at a little beyond 2.5% critical strain when the propagation direction is perpendicular to a cleavage plane. We discuss a method of characterizing crack tip position using a measure of area around the crack tip.


1999 ◽  
Author(s):  
Galyna M. Vasko ◽  
Perry H. Leo ◽  
Thomas W. Shield

Abstract The austenite to martensite pseudoelastic transformation induced by the anisotropic elastic crack tip stress field in a single crystal of shape memory alloy is considered. It is proposed that the orientation of the initial austenite-martensite interface that forms can be predicted based on knowledge of the stress field, the crystallography of the transformation and one of two selection criteria. These criteria are based on the work of formation of the martensite in stress field and the crack opening displacement the martensite causes at the crack. Predictions of the criteria are compared to experiments on three single edge notched CuAlNi single crystal specimens. Results indicate that the maximum work criterion accurately predicts the orientation of the austenite-martensite interfaces that initially form near a crack.


Relaxation at a sharp crack tip by a single slip band is considered. It is shown that for mixed-mode loading of a plane crack in an isotropic medium there is a unique angle between the slip band and the crack for which the energy release rate (or stress intensity factor) of the crack can be reduced to zero. For such a slip-band calculations are made of the slipband length and the crack-opening displacement as a function of the loading, crack length and friction stress acting on dislocations in the slip band. For small-scale yielding, a simple model is discussed that gives a good approximation to the crack-tip opening displacement and slip-band angle.


Author(s):  
Михаил Натанович Перельмутер

Для прямолинейной трещины со связями в концевой области на границе соединения материалов получены выражения для расчета раскрытия трещины вне зоны, занятой связями, и напряжений за вершиной трещины. Рассматривается действие однородных - нормальной и сдвиговой - внешних нагрузок. Размер концевой области трещины не полагается малым по сравнению с длиной трещины. Выполнено сопоставление с результатами, полученными методом граничных элементов. For a straight interfacial crack with bridged zone the expressions for calculating the opening of the crack outside of the bridged zone and stresses ahead of the crack tip are obtained. The action of uniform normal and shear external loads is considered. The size of the crack bridged zone is not considered small compared with the length of the whole crack. A comparison with the results obtained by the boundary element method is presented.


Sign in / Sign up

Export Citation Format

Share Document