Quantitative analysis of plastic deformation at a crack tip by recrystallization

1980 ◽  
Vol 43 (2) ◽  
pp. 145-150 ◽  
Author(s):  
E. Hornbogen ◽  
E. Minuth ◽  
St. Stanzl
Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5544
Author(s):  
Micael F. Borges ◽  
Diogo M. Neto ◽  
Fernando V. Antunes

Fatigue crack growth (FCG) has been studied for decades; however, several aspects are still objects of controversy. The objective here is to discuss different issues, using a numerical approach based on crack tip plastic strain, assuming that FCG is driven by crack tip deformation. ΔK was found to control cyclic plastic deformation at the crack tip, while Kmax has no effect. Therefore, alternative mechanisms are required to justify models based on ΔK and Kmax. The analysis of crack tip plastic deformation also showed that there is crack tip damage below crack closure. Therefore, the definition of an effective load range ΔKeff = Kmax − Kopen is not correct, because the portion of load range below opening also contributes to FCG. Below crack closure, damage occurs during unloading while during loading the crack tip deformation is elastic. However, if the maximum load is decreased below the elastic limit, which corresponds to the transition between elastic and elasto–plastic regimes, there is no crack tip damage. Additionally, a significant effect of the crack ligament on crack closure was found in tests with different crack lengths and the same ΔK. Finally, the analysis of FCG after an overload with and without contact of crack flanks showed that the typical variation of da/dN observed is linked to crack closure variations, while the residual stresses ahead of crack tip are not affected by the contact of crack flanks.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
F. V. Antunes ◽  
L. Paiva ◽  
R. Branco ◽  
L. P. Borrego

The effect of underloads is mostly quantified by the averaged effect on the fatigue crack growth rate, and the transient behavior is rarely investigated. The objective of this paper is to study the mechanisms behind the effect of underloads, periodic underloads, and underloads combined with overloads. A single underload smashes the material around the crack tip, producing a depression on crack flank and a local reduction of contact forces at the minimum load. The reduction of plastic elongation behind the crack tip has an immediate effect on crack opening level, which rapidly disappears with crack propagation. The smashing associated with the compressive force occurs mainly behind the crack tip position where the underload was applied. The effect of the underload is intimately linked to reversed plastic deformation, which explains its enhanced effect for kinematic hardening. The decrease of load below the minimum baseline load is the main loading parameter. The application of periodic underloads extends the effect of a single underload. The effect of the underload is enhanced by the presence of obstacles in the form of residual plastic deformation, which explains the great effect of underloads applied after overloads.


Author(s):  
Toru Osaki ◽  
Hiroshi Matsuzawa

Reconstitution in this paper means to constitute the original size compact specimen, which is made of the insert cut out from tested specimen and tubs welded to the insert. It is a promising technique to secure an adequate number of surveillance specimens for long-term operation of nuclear power plants. The fracture toughness of each reactor vessel of pressurized water reactors in Japan is measured periodically by 1/2T compact surveillance specimens, and is applied to assess the structural integrity of the reactor vessel under pressurized thermal shock loads. [1] This practice should be continued and enhanced if possible, after the full use of originally installed specimens, because its fracture toughness is lower than before. Reconstitution of irradiated 1/2T compact specimens to the original size was studied and demonstrated. Reconstituted specimens were composed of an irradiated material called an insert and un-irradiated tabs welded to the insert. It was demonstrated that the central part of the insert near the crack tip was not annealed by the thermal transient during welding if properly adjusted YAG laser welding was applied. Crack-tip opening and compliance before and after reconstitution were investigated by testing and analysis. Testing and analysis of un-irradiated specimens before reconstitution showed that the plastic deformation expanded to an area wider than 6 mm, the half width of the insert if it was a reconstituted specimen. The material had medium fracture toughness. The reconstituted specimen of the same material showed almost the same fracture toughness, although the weld could not be yielded as the insert, which could affect the crack opening. The crack opening was immune to the change of the deformation far from the crack tip. Correlation between J at 2.5 mm crack extension and plastic deformation width, and the effects of short time annealing of the insert far from the crack tip during welding were studied. Integrating the results, the conditions for reconstituting the 1/2T compact specimen were settled. The reconstituted specimen with irradiated insert designed to meet the conditions showed little change in fracture toughness.


1974 ◽  
Vol 6 (11) ◽  
pp. 1364-1367
Author(s):  
V. A. Vinokurov ◽  
I. G. Nekrasova

Author(s):  
Dong Hyun Moon ◽  
Jeong Soo Lee ◽  
Jae Myung Lee ◽  
Myung Hyun Kim

Elastic plastic fracture mechanics (EPFM) is the domain of fracture analysis which considers extensive plastic deformation at crack tip prior to fracture. J integral and crack tip opening displacement (CTOD) have been commonly used as parameters for EPFM analysis. The relationship between these parameters has been extensively studied by industry and academia. The plastic constraint factor can serve as a parameter to characterize constraint effects in fracture involving plastic deformation. Therefore, the characteristics of plastic constraint factor are important in EPFM analysis. In this study, the relationship between J Integral and CTOD was investigated by conducting fracture toughness tests using single edge notched bend (SENB) specimens. Also, plastic constraint factor was investigated by using finite element analysis. Numerical analysis was carried out using ABAQUS elastic-plastic analysis mode.


Sign in / Sign up

Export Citation Format

Share Document