An Adaptive Output Feedback Proportional-Integral-Derivative Controller for n-Link Type (m,s) Electrically Driven Mobile Manipulators

Author(s):  
Khoshnam Shojaei

The design of a trajectory tracking controller for a general class of n-link type (m,s) electrically driven wheeled mobile manipulators has been addressed in this paper. In order to achieve a high level of the tracking performance, an adaptive robust proportional-integral-derivative (PID) controller is proposed which only requires position measurements by designing a velocity observer. Integral actions are incorporated into the design of both controller and observer to reduce the steady-state error as much as possible. The dynamic surface control approach is also applied to reduce the design complexity at the actuator level. Lyapunov's direct method is used to guarantee that tracking and observation errors are semiglobally uniformly ultimately bounded. Simulation results are presented to illustrate the effectiveness of the proposed controller for a group of mobile manipulators.

Robotica ◽  
2017 ◽  
Vol 36 (1) ◽  
pp. 39-56 ◽  
Author(s):  
Khoshnam Shojaei

SUMMARYThis paper addresses the formation tracking control of a group of tractor–trailer systems in the presence of model uncertainties. A virtual leader–follower formation technique is used to design a controller in order to force a team of tractor–trailer systems to construct a desired formation configuration. Since tractor–trailer systems have a nonlinear multi-input multi-output model with strong couplings, multi-layer neural networks are employed to overcome unknown nonlinearities and uncertain parameters by using on-line weight tuning algorithms. Neural network approximation errors and external disturbances are also compensated with adaptive robust signals. The dynamic surface control approach has been used to reduce the complexity of the proposed controller effectively. Lyapunov’s direct method proves that all signals in the closed-loop formation control system are bounded and tracking errors converge to a neighborhood of the origin whose size is adjustable. Finally, simulation results will be provided to illustrate the efficiency of the proposed controller.


2012 ◽  
Vol 229-231 ◽  
pp. 811-814
Author(s):  
Wen Lei Li

This article presents an improved dynamic surface control (IDSC) approach for DC-DC Buck converter with parameter uncertainties and external disturbances. For IDSC method, the parameters update laws are designed based on uncertainty equivalence criterion, the requirements to the controlled systems are reduced, and the problem of explosion of complexity can be overcome. The features of the derived controller are discussed and illustrated by the Simulation study. The analysis and simulation show that the obtained controller possesses good adaptability and robustness to system uncertainties.


2016 ◽  
Vol 40 (2) ◽  
pp. 446-455 ◽  
Author(s):  
Hamed Jabbari Asl ◽  
Seyyed H Mahdioun ◽  
Jungwon Yoon

In this paper a vision-based tracking controller is designed for the quadrotor vertical take-off and landing of an unmanned aerial vehicle. An imaged-based visual servoing approach is utilised to localise the quadrotor with respect to a moving target. Perspective image moments are used to define the visual features, which are projected on a rotated image plane to simplify the image dynamics. Attitude information and angular velocities are assumed to be available and the controller uses the flow of image features as the linear velocity cue. Presence of delay in processing and communication is modelled as a constant time delay in the force input of the translational dynamics, where a controller is designed for theses dynamics to compensate the delay effect. This controller is saturated in order to meet the quadrotor model constraint. A dynamic surface control approach is utilised for the rotational dynamics to track the desired attitude, defined through the position control loop. The stability properties of the complete control scheme are analysed using a theory of nonlinear cascaded systems. Simulation examples are provided in both nominal and perturbed conditions which show the effectiveness of the proposed theoretical results.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Min Wan ◽  
Qingyou Liu ◽  
Jiawei Zheng ◽  
Jiaru Song

In this paper, a new fuzzy dynamic surface control approach based on a state observer is proposed for uncertain nonlinear systems with time-varying output constraints and external disturbances. An adaptive fuzzy state observer is used to estimate the states that cannot be measured in the systems. In our method, a time-varying Barrier Lyapunov Function (BLF) is used to ensure that the output does not violate time-varying constraints. In addition, dynamic surface control (DSC) technology is applied to overcome the problem of “explosion of complexity” in a backstepping control. Finally, the stability and signal boundedness of the system are confirmed by the Lyapunov method. The simulation results show the effectiveness and correctness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document