Dissection Versus Incubation: The Within-Subject Effects of Product Dissection Activities on Design Variety

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Elizabeth M. Starkey ◽  
Mohammad Alsager Alzayed ◽  
Samuel Hunter ◽  
Scarlett R. Miller

Abstract Product dissection is a popular educational tool in engineering design due to its ability to help students understand a product, provide inspiration for new design ideas, and aid in product redesign. While prior research has investigated how dissecting a product before idea generation impacts the creative output of the ideation session, these studies failed to look at the types of ideas generated before dissection or how the type of product dissected impacts this. Thus, the goal of the current study was to examine how product dissection impacts the solution space explored by students. Fifty-five undergraduate engineering students participated in the experiment; 40 participants virtually dissected a product, while the remaining 15 completed a personality test. The results of the study highlight that students explored new types of ideas during the second ideation session for all conditions and at all levels, with students having the biggest increase in embodiment variety when they dissected analogically far products. Overall, there were no differences in design variety between students in the dissection condition and the incubation condition. This study highlights how incubation can impact design variety and calls for further investigation of the interaction between product dissection and incubation.

Author(s):  
Elizabeth M. Starkey ◽  
Mohammad Alsager Alzayed ◽  
Samuel T. Hunter ◽  
Scarlett R. Miller

Product dissection is a popular educational tool in engineering design due to its ability to help students understand the components and sub-components of a product, provide inspiration for new design ideas, and aid in product redesign. While prior research has investigated how dissecting a product before idea generation impacts the creative output of the ideation session, these studies failed to look at the types of ideas generated before dissection or how the type of product dissected impacts this. In addition, few studies have looked at how creative self-efficacy (CSE), or one’s belief in their creative ability, is influenced by these intervention activities. Thus, the current study was developed to respond to these research voids through an exploratory study with engineering design students. The results of the study suggest that virtual dissection helps students generate a larger variety of ideas after the activity at the physical principle, working principle, and embodiment levels, and that the complexity of the dissected product impacts variation at the embodiment level. In addition, CSE was not affected by the dissection activity. These results strongly support the utilization and implementation of dissection practices in engineering education as a means for aiding students in the expansion of the solution space in the early stages of design. They also bring attention to the need to explore the exact cause-effect relationship between innovation interventions and student confidence gains in their creative abilities.


Author(s):  
Daniel Henderson ◽  
Kevin Helm ◽  
Kathryn Jablokow ◽  
Seda McKilligan ◽  
Shanna Daly ◽  
...  

This paper focuses on comparing and contrasting methods for assessing the variety of a group of design ideas. Variety is an important attribute of design ideas, because it indicates the extent to which the solution space has been explored. There is a greater likelihood of successfully solving a design problem when a more diverse set of ideas is generated in the early stages of design. While there are three existing metrics for variety, it has not been established how well they correlate with each other, so it is unknown whether they provide similar assessments of variety. This uncertainty inspired our investigation of the three existing metrics and, eventually, the development of a new variety metric — all of which we compared statistically and qualitatively. In particular, 104 design ideas collected from 29 sophomore mechanical engineering students were analyzed using the existing and new variety metrics. We conducted correlation analyses to determine if the four metrics were related and to what degree. We also considered the qualitative differences among these metrics, along with where they might be used most effectively. We found varying levels of statistically significant correlations among the four metrics, indicating that they are dependent. Even so, each metric offers a unique perspective on variety and may be useful in different situations.


Author(s):  
Katie Heininger ◽  
Hong-En Chen ◽  
Kathryn Jablokow ◽  
Scarlett R. Miller

The flow of creative ideas throughout the engineering design process is essential for innovation. However, few studies have examined how individual traits affect problem-solving behaviors in an engineering design setting. Understanding these behaviors will enable us to guide individuals during the idea generation and concept screening phases of the engineering design process and help support the flow of creative ideas through this process. As a first step towards understanding these behaviors, we conducted an exploratory study with 19 undergraduate engineering students to examine the impact of individual traits, using the Preferences for Creativity Scale (PCS) and Kirton’s Adaption-Innovation inventory (KAI), on the creativity of the ideas generated and selected for an engineering design task. The ideas were rated for their creativity, quality, and originality using Amabile’s consensual assessment technique. Our results show that the PCS was able to predict students’ propensity for creative concept screening, accounting for 74% of the variation in the model. Specifically, team centrality and influence and risk tolerance significantly contributed to the model. However, PCS was unable to predict idea generation abilities. On the other hand, cognitive style, as measured by KAI, predicted the generation of creative and original ideas, as well as one’s propensity for quality concept screening, although the effect sizes were small. Our results provide insights into individual factors impacting undergraduate engineering students’ idea generation and selection.


Author(s):  
Christine A. Toh ◽  
Scarlett R. Miller

Designers commonly interact with products in the early phases of design in order to understand the solution space and gain inspiration for new designs. Although designer-product interaction methods such as visual inspection and product dissection are recognized as a pivotal component of the engineering design process, little data is available on how these practices affect idea generation or when these activities are most useful for inspiring creative thought. Therefore, the current study was developed to understand the impact of these activities on creative idea generation. During our controlled study, fifty-nine undergraduate engineering students were instructed to either visually inspect or physically dissect an example milk frother and then generate ideas for a new, innovative design. These concepts were then evaluated for their novelty, variety, quality and quantity. Our analysis (ANOVA) revealed that participants who physically dissected the example frother produced ideas that were more novel but of lower quality than those that simply inspected the frother. Our results provide insights on the impact of designer-product interactions on creativity and we use these findings to develop recommendations for the use and alterations of these practices for improving creativity in engineering design.


Author(s):  
Serhad Sarica ◽  
Binyang Song ◽  
Jianxi Luo ◽  
Kristin L. Wood

Abstract There are growing efforts to mine public and common-sense semantic network databases for engineering design ideation stimuli. However, there is still a lack of design ideation aids based on semantic network databases that are specialized in engineering or technology-based knowledge. In this study, we present a new methodology of using the Technology Semantic Network (TechNet) to stimulate idea generation in engineering design. The core of the methodology is to guide the inference of new technical concepts in the white space surrounding a focal design domain according to their semantic distance in the large TechNet, for potential syntheses into new design ideas. We demonstrate the effectiveness in general, and use strategies and ideation outcome implications of the methodology via a case study of flying car design idea generation.


Author(s):  
Nasser Saleh ◽  
Andrew Large

Collaborative information behaviour is an emerging area in information science that studies when two or more actors identify, seek, search, and use information to accomplish a task. This paper reports on a recent research investigating the collaborative information behaviour of undergraduate engineering students in the context of engineering design group projects.Le comportement informationnel collaboratif est un sujet émergent en sciences de l’information qui s’intéresse aux moments où deux acteurs ou plus cherchent, repèrent, sélectionnent et utilisent l’information pour accomplir une tâche. Cette communication présente une étude récente sur le comportement informationnel informatif des étudiants en génie dans le contexte de projets de groupe en conception technique.


Author(s):  
Apurva Patel ◽  
William Kramer ◽  
Joshua D. Summers ◽  
Marissa Shuffler-Porter

Function models are widely recognized as a useful tool in mechanical engineering conceptual design as a bridge between problem and solution space. Unlike many other engineering design tools that are collaborative allowing many designers to contribute to the design task, function modeling has not been historically presented as a collaborative tool. This paper presents a controlled experimental study that explores the how different initial function models are completed by novice engineers influence the number of functions added to the model. Eighty-eight senior mechanical engineering students were given partial function models to two similarly complex engineering design problems. Each student was asked to complete the function model to best address the problem presented. The number of added functions was compared considering two variables: percent completed of initial seed model (10%, 40%, and 80%), initial chaining of functions (forward, backward, and nucleation). It was found that models for Backward Chaining and Nucleation at 10% initial seed resulted in the greatest addition of functions by the students. Further, Backward Chaining and Nucleation yielded more added functions than Forward Chaining in all seed configurations. Recognizing that there is a difference between Forward Chaining and Backward Chaining or Nucleation, further study is warranted to understand how individuals create function models and which approach yields more useful models to either understand the problem presented or to explore solution options.


Author(s):  
Jeffrey R. Mountain

It has been stated that the topic of design is not conducive to assessment by concept inventory. While design problems are more ambiguous than problems in analytical subjects, such as physics, statics, or thermodynamics; the broader design education community of scholars might agree on a set of concepts that are essential to the fundamental understanding of design. Following a review of textbooks, industry interviews, and other literary sources, this paper will propose a set of commonly accepted overarching concepts that might form a nucleus of an engineering design concept inventory. This is intended primarily to initiate a dialog among the design engineering education community about the future development of a design concept inventory and it’s applicability in assessing the design content knowledge of undergraduate engineering students prior to entering the profession as graduate engineers.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Christine A. Toh ◽  
Scarlett R. Miller ◽  
Gül E. Okudan Kremer

Although design novelty is a critical area of research in engineering design, most research in this space has focused on understanding and developing formal idea generation methods instead of focusing on the impact of current design practices. This is problematic because formal techniques are often not adopted in industry due to the burdensome steps often included in these methods, which limit the practicality and adoption of these methods. This study seeks to understand the impact of product dissection, a design method widely utilized in academia and industry, on design novelty in order to produce recommendations for the use or alterations of this method for supporting novelty in design. To investigate the impact of dissection, a study was conducted with 76 engineering students who completed a team-based dissection of an electric toothbrush and then individually generated ideas. The relationships between involvement in the dissection activity, the product dissected, the novelty and quantity of the ideas developed were investigated. The results reveal that team members who were more involved in the dissection activity generated concepts that were more novel than those who did not. In addition, the type of the dissected product also had an influence on design novelty. Finally, a positive correlation between the number of ideas generated and the novelty of the design concepts was identified. The results from this study are used to provide recommendations for leveraging product dissection for enhancing novelty in engineering design education and practice.


Sign in / Sign up

Export Citation Format

Share Document