Determination of Mars Solar-Belt by Modeling of Solar Radiation Using Artificial Neural Networks

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Tamer Khatib ◽  
Irjuwan Abunajeeb ◽  
Zainab Heneni

Missions to Mars need a power source, while, one of the most compatible sources for such a purpose is the photovoltaic system. Photovoltaic systems generate power based on the available energy from the Sun, and thus, solar radiation intensity at Mars should be known for design purposes. In this research, the feed-forward back-propagation artificial neural network is developed to predict solar radiation in terms of longitude, latitude, time of the day, temperature, altitude, pressure, amount of dust, and volume mixing ratio of water ice clouds. Data which are used to develop this model are obtained from the Mars Climate Database. The results of the developed method are accurate as compared with other methods whereas the correlation (R2) coefficient for the developed model is 0.97. The developed model then is used to predict mean solar radiation and mean temperature for every location on Mars and then the data are presented on Mars maps in order to determine the best location for harvesting energy from the Sun by photovoltaic systems. According to results, the solar radiation-temperature belt on Mars is found to be between latitudes 20 deg south and 15 deg north.

Author(s):  
Janner Leonel Santos Mantuano ◽  
Mario Javier Carreño Vera ◽  
Ever Nevárez Cedeño

A photovoltaic system is a set of devices that take advantage of the energy produced by the sun and convert it into electrical energy. The impact produced by the possibility of using solar energy in a controlled manner for different uses and purposes has allowed the development of complete systems of transformation, storage and distribution of the energy produced with photovoltaic systems as appropriate. The production of electricity from solar radiation using solar cells and photovoltaic panels is an application that has yet fully disseminated in Third World countries, such as Ecuador. The generation of electric power will depend on the hours that the sun shines and affects the solar panel, the type and quantity of modules installed, orientation, inclination, solar radiation that reaches them, quality of the installation and the power that can be delivered to the user. Ecuador is in a privileged location in terms of solar radiation, because the equatorial line that divides the planet into two hemispheres passes through it, being almost perpendicular to the radiation it receives. In addition, this does not change during the year and there a constant angle of incidence, characteristics that give photovoltaic solar energy a great potential for use. In the investigation, an analysis of how the prices of photovoltaic systems affect the Province of Manabí, the methodology used has been the bibliographic review to know as much as possible about what replenishes the costs of photovoltaic systems.


2011 ◽  
Vol 94 (1) ◽  
pp. 322-326
Author(s):  
Mohammadreza Khanmohammadi ◽  
Amir Bagheri Garmarudi ◽  
Mohammad Babaei Rouchi ◽  
Nafiseh Khoddami

Abstract A method has been established for simultaneous determination of sodium sulfate, sodium carbonate, and sodium tripolyphosphate in detergent washing powder samples based on attenuated total reflectance Fourier transform IR spectrometry in the mid-IR spectral region (800–1550 cm−1). Genetic algorithm (GA) wavelength selection followed by feed forward back-propagation artificial neural network (BP-ANN) was the chemometric approach. Root mean square error of prediction for BP-ANN and GA-BP-ANN was 0.0051 and 0.0048, respectively. The proposed method is simple, with no tedious pretreatment step, for simultaneous determination of the above-mentioned components in commercial washing powder samples.


2019 ◽  
Vol 29 (6) ◽  
pp. 501-506
Author(s):  
Minseok Kim ◽  
Seunghwan Jung ◽  
Jonggeun Kim ◽  
Hansoo Lee ◽  
Baekcheon Kim ◽  
...  

2012 ◽  
Vol 576 ◽  
pp. 91-94 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz H.F. Al Hazza ◽  
M.Y. Suprianto ◽  
Muhammad Riza

Machining of hardened steel at high cutting speeds produces high temperatures in the cutting zone, which affects the surface quality and cutting tool life. Thus, predicting the temperature in early stage becomes utmost importance. This research presents a neural network model for predicting the cutting temperature in the CNC end milling process. The Artificial Neural Network (ANN) was applied as an effective tool for modeling and predicting the cutting temperature. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the cutting temperature. The artificial neural network (ANN) was applied to predict the cutting temperature. Twenty hidden layer has been used with feed forward back propagation hierarchical neural networks were designed with Matlab2009b Neural Network Toolbox. The results show a high correlation between the predicted and the observed temperature which indicates the validity of the models.


2015 ◽  
Vol 19 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Ehsan Momeni ◽  
Ramli Nazir ◽  
Danial Jahed Armaghani ◽  
Harnedi Maizir

<p class="MsoNormal" style="text-align: justify; line-height: 200%;">Axial bearing capacity (ABC) of piles is usually determined by static load test (SLT). However, conducting SLT is costly and time-consuming. High strain dynamic pile testing (HSDPT) which is provided by pile driving analyzer (PDA) is a more recent approach for predicting the ABC of piles. In comparison to SLT, PDA test is quick and economical. Implementing feed forward back-propagation artificial neural network (ANN) for solving geotechnical problems has recently gained attention mainly due to its ability in finding complex nonlinear relationships among different parameters. In this study, an ANN-based predictive model for estimating ABC of piles and its distribution is proposed. For network construction purpose, 36 PDA tests were performed on various concrete piles in different project sites. The PDA results, pile geometrical characteristics as well as soil investigation data were used for training the ANN models. Findings indicate the feasibility of ANN in predicting ultimate, shaft and tip bearing resistances of piles. The coefficients of determination, R², equal to 0.941, 0.936, and 0.951 for testing data reveal that the shaft, tip and ultimate bearing capacities of piles predicted by ANN-based model are in close agreement with those of HSDPT. By using sensitivity analysis, it was found that the length and area of the piles are dominant factors in the proposed predictive model.</p><p class="MsoNormal" style="text-align: justify; line-height: 200%;"> </p><p class="MsoNormal" style="text-align: justify; line-height: 200%;"><strong>Resumen</strong></p><p class="MsoNormal" style="text-align: justify; line-height: 200%;">La Capacidad Axial de Soporte (ABC, en inglés) de un pilote de construcción se determina usualmente a través de una Prueba de Carga Estática (SLT, inglés). Sin embargo, estas pruebas son costosas y demandan tiempo. La evaluación de las Dinámicas de Alto Esfuerzo de Pilotes (HSDPT, inglés), que la provee el programa de Análisis de Excavación (PDA, inglés), es una forma de aproximación más reciente para preveer la Capacidad Axial de Soporte. En comparación con la Prueba de Cargas Estática, la evaluación PDA es rápida y económica. La implementación de Redes Neuronales Arficiales (ANN, en inglés) que permita resolver problemas geotécnicos ha ganado atención recientemente debido a su posibilidad de hallar relaciones no lineales entre los diferentes parámetros. En este estudio se propone un modelo predictivo ANN para estimar la Capacidad Axial de Soporte de pilotes y su distribución. Para fines de una red de construcción se realizaron 36 pruebas PDA en pilotes de diferentes proyectos. Los resultados de los Análisis de Excavación, las características geométricas de los pilotes, al igual que los datos de investigación del suelo se utilizaron para probar los modelos ANN. Los resultados indican la viabilidad del modelo ANN en predecir la resistencia de los pilotes. Los coeficientes de correlación, R², que alcanzaron 0.941, 09.36 y 0.951 para la evaluación de los datos, revelan que la capacidad del pilotaje en el último rodamiento, en el cojinete del eje y en la punta que se predijeron con el modelo ANN concuerda con las establecidas a través del HSDPT. A través del análisis de respuesta se determinó que la longitud y el área de los pilotes son factores dominantes en el modelo predictivo propuesto.</p>


Author(s):  
Nicholas Christakis ◽  
Michael Politis ◽  
Panagiotis Tirchas ◽  
Minas Achladianakis ◽  
Eleftherios Avgenikou ◽  
...  

Covid-19 is the most recent strain from the corona virus family that its rapid spread across the globe has caused a pandemic, resulting in over 200,000,000 infections and over 4,000,000 deaths so far. Many countries had to impose full lockdowns, with serious effects in all aspects of everyday life (economic, social etc.). In this paper, a computational framework is introduced, aptly named COVID-LIBERTY, in order to assist the study of the pandemic in Europe. Initially, the mathematics and details of the computational engine of the framework, a feed-forward, back-propagation Artificial Neural Network are presented. 5 European countries with similar population numbers were chosen and we examined the main factors that influence the spread of the virus, in order to be taken into consideration in the simulations. In this way lockdown, seasonal variability and virus effective reproduction were considered. The effectiveness of lockdown in the spread of the virus was examined and the Lockdown Index was introduced. Moreover, the relation of Covid- 19 to seasonal variability was demonstrated and the parametrization of seasonality presented.


2013 ◽  
Vol 14 (1) ◽  
pp. 10-17

Artificial neural networks (ANNs) are being used increasingly to predict water variables. This study offers an alternative approach to quantify the relationship between time of chlorination in potable water (due to convectional treatment procedure) and chlorination by-products concentration (expressed as carbon and bromine) with an ANN model, i.e., capturing non-linear relationships among the water quality variables. Thus, carbon and bromine concentrations in potable water (the second chosen due to the toxicity of brominated trihalomethanes, THMs) were predicted using artificial neural networks (ANNs) based mainly on multi-layer perceptrons (MLPs) architecture. The chlorination (detention) time as much as 58 hours in Athens distributed network, comprised the input variables to the ANNs models. Moreover, to develop an ANN model for estimating carbon and bromine, the available data set was partitioned into training, validation and test set. In order to reach an optimum amount of hidden layers or nodes, different architectures were tested. The quality of the ANN simulations was evaluated in terms of the error in the validation sample set for the proper interpretation of the results. The calculated sum-squared errors for training, validation and test set were 0.056, 0.039 and 0.060 respectively for the best model selected. Comparison of the results showed that a two-layer feed-forward back propagation ANN model could be used as an acceptable model for predicting carbon and bromine contained in potable water THMs.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Andaç Batur Çolak

Background: For the first time in December 2019 as reported in the Whuan city of China COVID-19 deadly virus, spread rapidly around the world and the first cases were seen in Turkey on March 11, 2020. On the same day, a pandemic was declared by the World Health Organization due to the rapid spread of the disease throughout the world. Methods: In this study, a multilayered perception feed-forward back propagation neural network has been designed for predicting the spread and mortality rate of COVID-19 virus in Turkey. COVID-19 data from six different countries were used in the design of the artificial neural network, which has 15 neurons in its hidden layer. 70% of these optimized data were used for training, 20% for validation and 10% for testing. Results: The resulting simulation results, COVID-19 virus in Turkey between 20 and 37 days showed the fastest to rise. The number of cases for the 20th day was predicted to be 13.845 and the 51st day for the 37th day. Conclusion: As for the death rate, it was predicted that a rapid rise on the 20th day would start and a slowdown around the 43rd day and progress towards the zero case point. The death rate for the 20th day was predicted to be 170 and the 43rd day for the 1.960s.


Sign in / Sign up

Export Citation Format

Share Document