Combined Effects of Variable Thermal Conductivity and Electrical Conductivity on Peristaltic Flow of Pseudoplastic Nanofluid in an Inclined Non-Uniform Asymmetric Channel: Applications to Solar Collectors

Author(s):  
W. M. Hasona ◽  
N. H. Almalki ◽  
A. A. ElShekhipy ◽  
M. G. Ibrahim

AbstractAs conduction, convection, and radiation are fundamental modes of heat emitter and transfer, this paper looks at the influences of temperature-dependent thermal conductivity and thermal radiation on peristaltic flow of pseudoplastic nanofluids in an inclined non-uniform asymmetric channel. Inclined magnetic field is taken into consideration. As the Wiedemann–Franz law in metals, electrical conductivity has identical behavior as that of thermal conductivity; as freely animated evenness, electrons transfer not only electric current but also heat energy. Consequently, electrical conductivity should be depending on the temperature of nanoparticles. The related equations of momentum, mass, and concentration are reformulated using lubrication approximations (i.e., tiny or zero Reynolds number and long wavelength). The resulting system of nonlinear equations is solved semi-numerically with the aid of the parametric ND solve package using mathematica version 11. Results of velocity, temperature, and concentration distributions are obtained in the analytical three-dimensional forms. The streamline graphs are offered in the terminus, which elucidate the trapping bolus phenomenon. As a special case, a comparison is made and signified with the recently published results by Hayat et al. (2016, Soret and Dufour Effects in MHD Peristalsis of Pseudoplastic Nanofluid With Chemical Reaction,” J. Mol. Liq., 220, pp. 693–706). It's found that, the increases in thermal conductivity and electrical conductivity cause an increase in the temperature of nanofluid and the heat transfer rate gets induced so a better absorption of solar energy is gained.

2016 ◽  
Vol 09 (02) ◽  
pp. 1650029 ◽  
Author(s):  
Q. Hussain ◽  
S. Asghar ◽  
T. Hayat ◽  
A. Alsaedi

In this paper, we investigate the effects of variable viscosity and thermal conductivity on peristaltic flow of Jeffrey fluid in an asymmetric channel. The inclined magnetic field, viscous dissipation and Joule heating are also considered. Wave frame and long wavelength approximations are made to formulate the problem. Pressure gradient, pressure drop per wavelength, velocity and temperature profiles are calculated analytically and discussed graphically. Comparison is made with the previous work for reliability.


2014 ◽  
Vol 92 (12) ◽  
pp. 1541-1555 ◽  
Author(s):  
Kh.S. Mekheimer ◽  
Y. Abd elmaboud

This paper discusses the effects of variable viscosity and thermal conductivity on peristaltic flow of a Newtonian fluid in a vertical asymmetric channel. Both viscosity and thermal conductivity are considered as a function of temperature. The long wavelength approximation is used to linearize the governing equations. The system of the governing nonlinear partial differential equation is solved using the perturbation method. Solutions are obtained for the velocity field, the temperature and the concentration. Asymmetry in the flow is induced by traveling waves of different phase and amplitude that propagate along the channel walls. The numerical results show that variable viscosity and thermal conductivity have significant influence on velocity, temperature, and mass transfer. The importance of pertinent flow parameters entering into the flow modeling is discussed.


2020 ◽  
Vol 9 (1) ◽  
pp. 233-243 ◽  
Author(s):  
Nainaru Tarakaramu ◽  
P.V. Satya Narayana ◽  
Bhumarapu Venkateswarlu

AbstractThe present investigation deals with the steady three-dimensional flow and heat transfer of nanofluids due to stretching sheet in the presence of magnetic field and heat source. Three types of water based nanoparticles namely, copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are considered in this study. The temperature dependent variable thermal conductivity and thermal radiation has been introduced in the energy equation. Using suitable similarity transformations the dimensional non-linear expressions are converted into dimensionless system and are then solved numerically by Runge-Kutta-Fehlberg scheme along with well-known shooting technique. The impact of various flow parameters on axial and transverse velocities, temperature, surface frictional coefficients and rate of heat transfer coefficients are visualized both in qualitative and quantitative manners in the vicinity of stretching sheet. The results reviled that the temperature and velocity of the fluid rise with increasing values of variable thermal conductivity parameter. Also, the temperature and normal velocity of the fluid in case of Cu-water nanoparticles is more than that of Al2O3- water nanofluid. On the other hand, the axial velocity of the fluid in case of Al2O3- water nanofluid is more than that of TiO2nanoparticles. In addition, the current outcomes are matched with the previously published consequences and initiate to be a good contract as a limiting sense.


2018 ◽  
Vol 7 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Saima Noreen

Abstract This research is devoted to the peristaltic flow of Eyring-Powell nanofluid in an asymmetric channel. Robins-type (convective) boundary conditions are employed in the presence of mixed convection and magnetic field. The basic equations of Eyring-Powell nanofluid are modeled in wave frame of reference. Long wavelength and low Reynolds number approach is utilized. Numerical solution of the governing problem is computed and analyzed. The effects of various parameters of interest on the velocity, pressure rise, concentration and temperature are discussed and illustrated graphically. Brownian motion parameter and thermophoresis parameter facilitates the increase in temperature of fluid. Biot numbers serve to reduce the temperature at channel walls.


RSC Advances ◽  
2016 ◽  
Vol 6 (27) ◽  
pp. 22364-22369 ◽  
Author(s):  
Zhiduo Liu ◽  
Dianyu Shen ◽  
Jinhong Yu ◽  
Wen Dai ◽  
Chaoyang Li ◽  
...  

Three dimensional graphene foam incorporated into epoxy matrix greatly enhance its thermal conductivity (up to 1.52 W mK−1) at low graphene foam loading (5.0 wt%), over an eight-fold enhancement in comparison with that of neat epoxy.


2018 ◽  
Vol 22 (09n10) ◽  
pp. 821-830 ◽  
Author(s):  
Zheng Wang ◽  
Jian-Hua Zhang ◽  
Cheng-Yi Zhu ◽  
Shao-Yun Yin ◽  
Mei Pan

Bipodal ligand 5,15-bis(4-carboxyphenyl) porphyrin (H[Formula: see text]DCPP) was designed and synthesized. By adjusting the molar ratio of H[Formula: see text]DCPP, ancillary ligand 4,4-bipyridine (bpy) and zinc acetate salts, three novel coordination assemblies, namely, zero-dimensional dimeric [Zn[Formula: see text](H[Formula: see text]DCPP)[Formula: see text] ·bpy] ·4H[Formula: see text]O ·4DMF (Zn-D), two-dimensional polymeric {[Zn[Formula: see text](DCPP) ·bpy[Formula: see text] ·H[Formula: see text]O ·DMF[Formula: see text]] ·solvent}[Formula: see text] (Zn-2D), and three-dimensional polymeric [Zn[Formula: see text](DCPP) ·bpy[Formula: see text]][Formula: see text] (Zn-3D) were assembled. Due to the delicate integration of multiple chromophores in the coordination space combining bpy, DCPP and MLCT emissions together, photoluminescence (PL) of the three porphyrin-zinc coordination assemblies differ from each other and color tone is tunable from blue to orange with changes of the excitation wavelength. In particular, white light emission (WLE) can be observed by the excitation of 270 to 290 nm, representing the first examples of single component WLE compounds based on porphyrin ligands. Furthermore, temperature-dependent luminescence results in a linear [Formula: see text]–[Formula: see text] relationship in Zn-2D and Zn-3D assemblies, applicable for long wavelength red-emitting thermometers.


2010 ◽  
Vol 65 (12) ◽  
pp. 1121-1127 ◽  
Author(s):  
Tasawar Hayat ◽  
Najma Saleem ◽  
Awatif A. Hendi

An analysis has been carried out for peristaltic flow and heat transfer of a Carreau fluid in an asymmetric channel with slip effect. The governing problem is solved under long wavelength approximation. The variations of pertinent dimensionless parameters on temperature are discussed. Pumping and trapping phenomena are studied.


Sign in / Sign up

Export Citation Format

Share Document