Optimal Sensor Placement Methods in Active High Power Density Electronic Systems With Experimental Validation

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Satya R. T. Peddada ◽  
Pamela J. Tannous ◽  
Andrew G. Alleyne ◽  
James T. Allison

Abstract Increasing the efficiency and density of power electronic systems (PESs) is an important objective for many high-impact applications, such as electric vehicle charging and aircraft electrification. Due to compactness and high heat dissipation, careful thermal monitoring of such PESs is required. Strategic placement of temperature sensors can improve the accuracy of real-time temperature distribution estimates. Enhanced temperature estimation supports increased power throughput and density because PESs can be operated in a less conservative manner while still preventing thermal failure. This article presents new methods for temperature sensor placement for 2- and 3-dimensional PESs that (1) improve computational efficiency (by orders of magnitude in at least one case), (2) support the use of more accurate evaluation metrics, and (3) are scalable to high-dimension sensor placement problems. These methods are tested via sensor placement studies based on a single-phase flying capacitor multi-level (FCML) prototype inverter. Information-based metrics are derived from a resistance-capacitance (RC) lumped parameter thermal model. Other more general metrics and system models are possible through the application of a new continuous relaxation strategy introduced here for placement representation. A new linear programming (LP) formulation is presented that is compatible with a particular type of information-based metric. This LP strategy is demonstrated to support an efficient solution of finely discretized large-scale placement problems. The optimal sensor locations obtained from these methods were tested via physical experiments. The new methods and results presented here may aid the development of thermally aware PESs with significantly enhanced capabilities.

1986 ◽  
Vol 72 ◽  
Author(s):  
W. H. Knausenberger ◽  
M. R. Pinnel

AbstractRapid technological advances in electronic systems technologies are placing increasingly severe demands on interconnection media. One primary driving force is the evolutionary advance in the scale of integration in silicon with its inherent cost and performance advantages. A second key driving force is the revolutionary development of photonics which is rapidly integrating into most levels of the interconnection heirarchy. The performance of large scale electronic systems will be increasingly dominated and limited by their interconnection environment. To sustain the present rate of growth in the performance of future systems, new technology directions in interconnection will be necessary.This paper will explore the traditional levels of interconnection from IC chip packages to the frame level. It will be shown how the various levels of interconnection interrelate and how all levels must be improved simultaneously to achieve the full performance and cost benefits offered by device advances and photonics. The first major step in this evolution is well underway with the rapid transition to surface mounting of devices. This places new demands on materials and assembly technologies which will be discussed. However, the demands of this first step may eventually appear to be minor compared to those yet to come if current trends continue. Several scenarios for this future will be considered and related to the challenges placed on interconnection technology hardware and materials in terms of performance characteristics such as density, speed and heat dissipation.


2020 ◽  
pp. 136943322094719
Author(s):  
Xianrong Qin ◽  
Pengming Zhan ◽  
Chuanqiang Yu ◽  
Qing Zhang ◽  
Yuantao Sun

Optimal sensor placement is an important component of a reliability structural health monitoring system for a large-scale complex structure. However, the current research mainly focuses on optimizing sensor placement problem for structures without any initial sensor layout. In some cases, the experienced engineers will first determine the key position of whole structure must place sensors, that is, initial sensor layout. Moreover, current genetic algorithm or partheno-genetic algorithm will change the position of the initial sensor locations in the iterative process, so it is unadaptable for optimal sensor placement problem based on initial sensor layout. In this article, an optimal sensor placement method based on initial sensor layout using improved partheno-genetic algorithm is proposed. First, some improved genetic operations of partheno-genetic algorithm for sensor placement optimization with initial sensor layout are presented, such as segmented swap, reverse and insert operator to avoid the change of initial sensor locations. Then, the objective function for optimal sensor placement problem is presented based on modal assurance criterion, modal energy criterion, and sensor placement cost. At last, the effectiveness and reliability of the proposed method are validated by a numerical example of a quayside container crane. Furthermore, the sensor placement result with the proposed method is better than that with effective independence method without initial sensor layout and the traditional partheno-genetic algorithm.


Author(s):  
Mahdi Esmaily Moghadam ◽  
Yuri Bazilevs ◽  
Tain-Yen Hsia ◽  
Alison Marsden

A closed-loop lumped parameter network (LPN) coupled to a 3D domain is a powerful tool that can be used to model the global dynamics of the circulatory system. Coupling a 0D LPN to a 3D CFD domain is a numerically challenging problem, often associated with instabilities, extra computational cost, and loss of modularity. A computationally efficient finite element framework has been recently proposed that achieves numerical stability without sacrificing modularity [1]. This type of coupling introduces new challenges in the linear algebraic equation solver (LS), producing an strong coupling between flow and pressure that leads to an ill-conditioned tangent matrix. In this paper we exploit this strong coupling to obtain a novel and efficient algorithm for the linear solver (LS). We illustrate the efficiency of this method on several large-scale cardiovascular blood flow simulation problems.


2018 ◽  
Vol 144 ◽  
pp. 04010
Author(s):  
Bobin Saji George ◽  
M. Ajmal ◽  
S. R. Deepu ◽  
M. Aswin ◽  
D. Ribin ◽  
...  

Intensifying electronic component power dissipation levels, shortening product design cycle times, and greater than before requirement for more compact and reliable electronic systems with greater functionality, has heightened the need for thermal design tools that enable accurate solutions to be generated and quickly assessed. The present numerical study aims at developing a computational tool in OpenFOAM that can predict the heat dissipation rate and temperature profile of any electronic component in operation. A suitable computational domain with defined aspect ratio is chosen. For analyzing, “buoyant Boussinesq Simple Foam“ solver available with OpenFOAM is used. It was modified for adapting to the investigation with specified initial and boundary conditions. The experimental setup was made with the dimensions taken up for numerical study. Thermocouples were calibrated and placed in specified locations. For different heat input, the temperatures are noted down at steady state and compared with results from the numerical study.


Author(s):  
Arman Khalighi ◽  
Matthew Blomquist ◽  
Abhijit Mukherjee

In recent years, heat dissipation in micro-electronic systems has become a significant design limitation for many component manufactures. As electronic devices become smaller, the amount of heat generation per unit area increases significantly. Current heat dissipation systems have implemented forced convection with both air and fluid media. However, nanofluids may present an advantageous and ideal cooling solution. In the present study, a model has been developed to estimate the enhancement of the heat transfer when nanoparticles are added to a base fluid, in a single microchannel. The model assumes a homogeneous nanofluid mixture, with thermo-physical properties based on previous experimental and simulation based data. The effect of nanofluid concentration on the dynamics of the bubble has been simulated. The results show the change in bubble contact angles due to deposition of the nanoparticles has more effect on the wall heat transfer compared to the effect of thermo-physical properties change by using nanofluid.


Author(s):  
Y. Chai ◽  
W. Tian ◽  
J. Tian ◽  
L. W. Jin ◽  
X. Z. Meng ◽  
...  

Abstract In recent years, a primary concern in the development of electronic technology is high heat dissipation of power devices. The advantages of unique thermal physical properties of graphite foam raise up the possibility of developing pool boiling system with better heat transfer efficiency. A compact thermosyphon was developed with graphite foam insertions to explore how different parameters affect boiling performance. Heater wall temperature, superheat, departure frequency of bubbles, and thermal resistance of the system were analyzed. The results indicated that the boiling performance is affected significantly by thermal conductivity and pore diameter of graphite foam. A proposed heat transfer empirical correlation reflecting the relations between graphite foam micro structures and pool boiling performance of Novec7100 was developed in this paper.


Sign in / Sign up

Export Citation Format

Share Document