A New Class of Uniform Continuous Higher-Order Sliding Mode Controllers

Author(s):  
Shyam Kamal ◽  
P. Ramesh Kumar ◽  
Asif Chalanga ◽  
Jitendra Kumar Goyal ◽  
Bijnan Bandyopadhyay ◽  
...  

Abstract This paper proposes a new class of uniform continuous higher-order sliding mode algorithm (UCHOSMA) for the arbitrary relative degree systems. The proposed methodology is a combination of two controllers where one of the components is a uniform super-twisting control which acts as the disturbance compensator and the second part gives the uniform finite time convergence for the disturbance free system. This algorithm provides uniform finite time convergence of the output and its higher derivatives using an absolutely continuous control signal and thus alleviating the chattering phenomenon. The attractive feature of the proposed controller is that irrespective of the different initial conditions, the control is able to bring the states of the system to the equilibrium point uniformly in finite time. The effectiveness of the proposed controller has been demonstrated with both simulation and experimental results.

Author(s):  
Vo Anh Tuan ◽  
Hee-Jun Kang

In this study, a new finite time control method is suggested for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting method. First, to avoid the singularity drawback and achieve the finite time convergence of positional errors with a fast transient response rate, nonsingular fast terminal sliding variables are constructed in the position errors' state space. Next, adaptive tuning laws based on the super-twisting scheme are presented for the switching control law of terminal sliding mode control (TSMC) so that a continuous control law is extended to reject the effects of chattering behavior. Finally, a new finite time control method ensures that sliding motion will take place, regardless of the effects of the perturbations and uncertainties on the robot system. Accordingly, the stabilization and robustness of the suggested control system can be guaranteed with high-precision performance. The robustness issue and the finite time convergence of the suggested system are totally confirmed by the Lyapunov stability principle. In simulation studies, the experimental results exhibit the effectiveness and viability of our proposed scheme for joint position tracking control of a 3DOF PUMA560 robot.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Dan-xu Zhang ◽  
Yang-wang Fang ◽  
Peng-fei Yang ◽  
You-li Wu ◽  
Tong-xin Liu

This paper proposed a finite time convergence global sliding mode control scheme for the second-order multiple models control system. Firstly, the global sliding surface without reaching law for a single model control system is designed and the tracking error finite time convergence and global stability are proved. Secondly, we generalize the above scheme to the second-order multimodel control system and obtain the global sliding mode control law. Then, the convergent and stable performances of the closed-loop control system with multimodel controllers are proved. Finally, a simulation example shows that the proposed control scheme is more effective and useful compared with the traditional sliding mode control scheme.


2010 ◽  
Vol 92 (7-8) ◽  
pp. 257-268 ◽  
Author(s):  
Yu-Sheng Lu ◽  
Chien-Wei Chiu ◽  
Jian-Shiang Chen

Author(s):  
Shuai Xu ◽  
Min Gao ◽  
Dan Fang ◽  
Yi Wang ◽  
Baochen Li

Aiming at the problem of missile attacking ground target in pitch plane, combined with a composite fast nonsingular terminal sliding mode, a new adaptive finite-time stable guidance law with attack angle constraint is designed based on the second-order sliding mode control. The improved extended state observer is used to estimate the uncertainties and compensate the control quantity, and the dynamic control gains are designed to avoid the problem about “excessive estimation” of the parameter upper limit. According to the Lyapunov stability theory, it is proved that the system states can converge into a small neighborhood near the equilibrium point in a finite time. Monte Carlo simulation is carried out by randomly generating initial conditions, which proves that the guidance law has strong adaptability to different initial conditions and has good guidance precision.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Wenguang Zhang ◽  
Wenjun Yi

The finite-time attitude tracking control for gliding-guided projectile with unmatched and matched disturbance is investigated. An adaptive variable observer is used to provide estimation for the unmeasured state which contains unmatched disturbance. Then, an improved adaptive twisting sliding mode algorithm is proposed to compensate for the matched disturbance dynamically with better transient quality. Finally, a proof of the finite-time convergence of the closed-loop system under the disturbance observer and the adaptive twisting sliding mode-based controller is derived using the Lyapunov technique. This attitude tracking control scheme does not require any information on the bounds of uncertainties. Simulation results demonstrate that the proposed method which is able to acquire the minimum possible values of the control gains guaranteeing the finite-time convergence performs well in chattering attenuation and tracking precision.


Sign in / Sign up

Export Citation Format

Share Document