Fracture Toughness of Biological Composites With Multilevel Structural Hierarchy

2020 ◽  
Vol 87 (7) ◽  
Author(s):  
Fan Wang ◽  
Kui Liu ◽  
Dechang Li ◽  
Baohua Ji

Abstract It is well known that the biological composites have superior mechanical properties due to their exquisite multilevel structural hierarchy. However, the underlying mechanisms of the roles of this hierarchical design in the toughness of the biocomposites remain elusive. In this paper, the deformation and fracture mechanism of multilevel hierarchical structures are explored by molecular dynamics simulations. The effects of the multilevel design on fracture toughness, nonlinear deformation of soft matrix, and the crack path pattern were quantitatively analyzed. We showed that the toughness of composites is closely associated with the pattern of the crack path and the nonlinear deformation of the matrix. Additionally, the structure with a higher level of hierarchy exhibit higher toughness, which is less sensitive to the geometrical change of inclusions, such as the aspect ratio and the staggered ratio. This work provides more theoretical evidence of the toughening mechanism of the multilevel hierarchy in fracture toughness of biological materials via new methods of analyzing fracture of multilevel structures and provides guidelines for the design of high-performance engineering materials.

Alloy Digest ◽  
1990 ◽  
Vol 39 (2) ◽  

Abstract ARMCO PH 13-8Mo is designed for high-performance applications requiring high strength coupled with excellent resistance to corrosion and stress corrosion. It has excellent toughness, good transverse properties and excellent forgeability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-224. Producer or source: Baltimore Specialty Steels Corporation. Originally published May 1969, revised February 1990.


Alloy Digest ◽  
2000 ◽  
Vol 49 (12) ◽  

Abstract BETHLEHEM LUKENS PLATE HPS-70W is a high-performance steel (HPS) developed through a cooperative agreement among the Federal Highway Administration (FHWA), the American Iron and Steel Institute (AISI), and the Department of the Navy. This steel is an improved version of ASTM A 709 grade 70W. This datasheet provides information on composition and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming and joining. Filing Code: SA-506. Producer or source: Bethlehem Lukens Plate.


Alloy Digest ◽  
2016 ◽  
Vol 65 (2) ◽  

Abstract Outokumpu Type 630 is a martensitic age hardenable alloy of composition 17Cr-4Ni. The alloy has high strength and corrosion resistance similar to that of Type 304 stainless steel. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1238. Producer or source: Outokumpu High Performance Stainless.


Alloy Digest ◽  
1991 ◽  
Vol 40 (10) ◽  

Abstract VANADIS 4 is a high performance cold work tool steel made by powder metallurgy. It offers an extremely good combination of resistance and toughness for high performance tools. This datasheet provides information on composition, physical properties, hardness, elasticity, and bend strength as well as fracture toughness. It also includes information on heat treating and machining. Filing Code: TS-506. Producer or source: Uddeholm Corporation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chaojian Chen ◽  
Manjesh Kumar Singh ◽  
Katrin Wunderlich ◽  
Sean Harvey ◽  
Colette J. Whitfield ◽  
...  

AbstractThe creation of synthetic polymer nanoobjects with well-defined hierarchical structures is important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Inspired by the programmability and precise three-dimensional architectures of biomolecules, here we demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers. Linear poly(2-hydroxyethyl methacrylate) of different lengths are folded into cyclic polymers and their self-assembly into hierarchical structures is elucidated by various experimental techniques and molecular dynamics simulations. Based on their structural similarity, macrocyclic brush polymers with amphiphilic block side chains are synthesized, which can self-assemble into wormlike and higher-ordered structures. Our work points out the vital role of polymer folding in macromolecular self-assembly and establishes a versatile approach for constructing biomimetic hierarchical assemblies.


Author(s):  
Oksana Morozova ◽  
Edwin Gevorkyan

This descriptive review presents current knowledge about the bioengineering use of a zirconium dioxide, the advantages and disadvantages of the material, and the prospects for research in this direction. The work reflects the success of the practical application of the zirconium dioxide as a material for dental structures and biological implants. Such practical characteristics, such as color-stability, chemical stability, good aesthetics, biocompatibility and durability, allowed to actively use the zirconium dioxide as a material for producing various dental structures. In comparison with other ceramics, the presence of high-performance of strength and fracture toughness of the zirconium dioxide enables the use of this material as an alternative material for the reconstructions in the readings with considerable loads. High hardness determines the zirconium dioxide as an excellent material for articular prostheses, because of its hardness, provides a low level of wear and excellent biocompatibility. However, along with positive characteristics, a widespread practical problem of using the zirconium dioxide in dentistry is a chip or fracture of veneering ceramics. It has also been reported that there is a shortage of orthopedic implants such as hydrothermal stability. The solution of such problems is indicated and the use of composite materials based on the zirconium dioxide, which allows to solve a similar problem, as well as to increase the service life and reliability of orthopedic implants by providing a higher fracture toughness and mechanical strength. The existence of such composite materials based on the zirconium dioxide provides a significant increase in the wear resistance of orthopedic implants, which is essential for successful prosthetics


RSC Advances ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 2637-2643 ◽  
Author(s):  
Lili Liu ◽  
Lihui Mou ◽  
Jia Yu ◽  
Shimou Chen

Urchin-like microspheres consisting of radial carbon-coated cobalt monoxide nanowires are designed, to fabricate a micro/nano hierarchical structure for efficient Li-storage.


Sign in / Sign up

Export Citation Format

Share Document