Experimental Investigation of Flow Instability Between Two Vertical Parallel Channels Using Supercritical CO2

Author(s):  
Anantvir Singh Saini ◽  
Vijay Chatoorgoon ◽  
Dhanashree S. Ghadge

Abstract Supercritical flow experiments were conducted at University of Manitoba using supercritical flow facility-vertical (SFF-V), which is a two vertical parallel channel assembly. The working fluid was CO2 at supercritical pressure and was driven by natural convective forces rather than a pump. Different system pressures (7.4 MPa–9.1 MPa), inlet temperatures (7 °C–30.1 °C) and various outlet-channel k-factors were used. A total of eleven parallel channel out-of-phase instability boundary points were obtained and the details of those cases are reported herein. These results can be used for code validation, to enrich the limited database of supercritical parallel-channel instability and to lend further insight into supercritical flow instability in heated parallel channels.

2013 ◽  
Vol 57 (2) ◽  
pp. 549-557 ◽  
Author(s):  
Ting Xiong ◽  
Xiao Yan ◽  
Shanfang Huang ◽  
Junchong Yu ◽  
Yanping Huang

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Edward Shitsi ◽  
Seth Kofi Debrah ◽  
Vincent Yao Agbodemegbe ◽  
Emmanuel Ampomah-Amoako

Abstract Supercritical water-cooled reactor (SCWR), which is considered as the logical extension of existing light water reactors (LWRs) (pressurized water reactor and boiling water reactor (BWR)), has the potential of increasing the efficiency of power generation to 45% compared to 33% of that of LWRs. But without the challenges of heat transfer and hydrodynamics, and reactor core design materials due to supercritical flow instability which is associated with sharp variation in fluid properties near the vicinity of the pseudo-critical temperature. Supercritical flow instability therefore needs to be addressed ahead of the deployment and operation of SCWR in the near future. The main purpose of this study is to carry out flow instability analysis in parallel channels with supercritical water. The study also aims at examining the capability of using three-dimensional (3D) simulation of turbulent flow in arbitrary regions computational continuum mechanics C++ based code (3D STAR-CCM+ CFD code) to predict flow oscillation amplitude and periods, and instability power boundaries at low-power boundary (LPB) and at high-power boundary (HPB). Parameters considered in the investigation include mass flowrate, system pressure, and gravity. Two different threshold power instability boundaries were obtained from the study. These instability power boundaries include lower threshold where stability of the parallel channel system decreases with increasing coolant inlet temperature, and upper threshold where stability of the parallel channel system increases with increasing coolant inlet temperature. From the results of the investigation, it can be found that: (1) for LPB at 23 MPa, only lower threshold was obtained as flow instability power boundary; and for HPB at 23 MPa, both lower and upper thresholds were obtained as flow instability power boundaries. The numerical findings quite well agree with the experimental findings at 23 MPa for both LPB and HPB; (2) only lower threshold was obtained as flow instability power boundary at both 23 MPa and 25 MPa for LPB. For HPB, both lower and upper thresholds were obtained as flow instability power boundaries at both 23 MPa and 25 MPa; (3) only lower threshold was obtained as flow instability power boundary for the parallel channel system with or without gravity influence for LPB. For HPB, both lower and upper threshold flow instability power boundaries were obtained for the parallel channel system with gravity influence, but only lower threshold flow instability power boundary was obtained for system without gravity influence; (4) only lower threshold was obtained as flow instability power boundary at system mass flowrates of 125 kg/h and 145 kg/h for LPB. For HPB, both lower and upper threshold flow instability power boundaries were obtained for system mass flowrate of 125 kg/h, but only lower threshold flow instability power boundary was obtained for system mass flowrate of 145 kg/h. For both LPB and HPB, the numerical findings agree quite well with the experimental results for a system operated at 125 kg/h and 145 kg/h; (5) the investigated parameters such as mass flowrate, pressure, and gravity have significant effects on amplitude of mass flow oscillation, but have little effects on the period of mass flow oscillation for both LPB and HPB. Results from the numerical simulation were compared with the results from the experiment for both LPB and HPB. The numerical amplitude results obtained were far less than the amplitude results obtained from the experiment. But there was no significant difference between the oscillation periods obtained from both the numerical simulation and experiment. (6) Flow instability studies including predicting flow oscillation amplitude and periods, and instability power boundaries could be carried out using 3D STAR-CCM+ CFD code. The effects of heating structures on flow instability results have not been considered in this study. Previous studies have shown that including heating structures in geometrical models for numerical studies may have effects on flow instability results. More experimental studies are needed for validation of similar numerical studies carried out at supercritical pressures using various numerical tools.


Author(s):  
Vijay Chatoorgoon

An analytical study of supercritical flow stability in two parallel channels is reported here. This would be of immense value to new reactor designs that propose to use supercritical light water on the primary side. The finding is that two-phase flow instability and supercritical flow instability are not identical, as there are notable phenomenological differences as well as mathematical differences.


Author(s):  
Yefei Liu ◽  
Yang Liu ◽  
Xingtuan Yang ◽  
Liqiang Pan

Series of experiments are conducted in a single microchannel, where subcooled water flows upward inside a transparent and vertical microchannel. The cross section of the channel is rectangle with the hydraulic diameter of 2.8mm and the aspect ratio of 20. The working fluid is 3–15K subcooled and surface heat flux on the channel is between 0–3.64 kW/m2, among which two-phase instability at low vapor quantity may occur. By using a novel transparent heating technique and a high-speed camera, visualization results are obtained. The parameters are acquired with a National Instruments Data Acquisition card. In the experiments, long-period oscillation and short-period oscillation are observed as the primary types of instability in a microchannel. Instability characteristics represented from signals correspond well with the flow pattern. Moreover, effects of several parameters are investigated. The results indicate that the oscillating period generally increases with the heat flux density and decreases with inlet subcooling, while the effects of inlet resistance are more complex.


Author(s):  
Vijay Chatoorgoon

An analytical study of static instability in parallel channels at supercritical pressure is conducted. Until now, primarily the density-wave type has been investigated and reported. This paper derives an analytical expression for the static instability in parallel channels, which lends useful insight. This topic that would be of immense value to the new reactor designs that aim to use supercritical light water on the primary side. The finding is that static instability would unlikely be a problem in a supercritical pressure reactor because of the low inlet core temperature that it would be encountered.


1965 ◽  
Vol 5 (41) ◽  
pp. 651-660 ◽  
Author(s):  
N. A. Ostenso ◽  
P. V. Sellmann ◽  
T. L. Péwé

AbstractAs an extension of an intensive study of Gulkana Glacier a 42 station gravimeter survey was made to gain some insight into its third dimension. This survey showed that the glacier’s main tongue occupies a complex valley composed essentially of two parallel channels separated by a medial ridge which extends southward from rock bastions in the accumulation zone. At mid-glacier the ice thickness in the larger eastern channel is 225 m., in contrast to 130 m. in the western channel. The medial ridge degenerates down-glacier probably disappearing within 2 km. of the glacier terminus. The basic surface flow pattern of the glacier described by Moores can be adequately explained by this basal topography. Seasonal velocity variations are possibly caused by melt-water basal lubrication with one channel being favored over the other at different times of the year, in agreement with observations by Elliston on the Gorner-Gletscher, Switzerland, and with the glacier sliding theory of Weertman.


Sign in / Sign up

Export Citation Format

Share Document