Experimental Investigation and Simulation of a Boeing 747 Auxiliary Power Unit

2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Christos Skliros ◽  
Fakhre Ali ◽  
Ian Jennions

Abstract Auxiliary power units (APUs) are a major driver of maintenance on civil aircraft. However, experimental data and performance simulations are rarely seen in public domain literature. While there is recourse to aircraft engine experience, this does not address the loading and the failure modes of an APU. This work aims to add to the literature, by experimentally investigating a Boeing 747 APU, collecting data under various power settings and ambient conditions, and using these data to calibrate a simple simulation model. This simulation model will subsequently be used to explore failure modes in the APU and hence what sensors may be needed for health monitoring purposes in future work. In this paper, a Boeing 747 APU rig development process and the testing strategy are presented. The rig is validated through a process that includes uncertainty analysis, repeatability tests, consistency tests, and comparison of the collected data with the calibrated simulation model. The results from the rig's validation indicate that the data collected from the APU is independent of its running time or the order of loading cycles imposed on it, i.e., the results are path independent. Changes in pneumatic and electrical power result in small changes in the rotational speed despite the fact that the rotational speed should remain constant. The rotational speed shows a slightly increasing trend when the extracted power rises, and this affects the APU thermodynamic characteristics. This work has resulted in a calibrated simulation model that will be further used in examining fault mode scenarios, as injecting these directly into the rig is seen as high risk.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 710
Author(s):  
Tanja Ilić ◽  
Ivana Pantelić ◽  
Snežana Savić

Due to complex interdependent relationships affecting their microstructure, topical semisolid drug formulations face unique obstacles to the development of generics compared to other drug products. Traditionally, establishing bioequivalence is based on comparative clinical trials, which are expensive and often associated with high degrees of variability and low sensitivity in detecting formulation differences. To address this issue, leading regulatory agencies have aimed to advance guidelines relevant to topical generics, ultimately accepting different non-clinical, in vitro/in vivo surrogate methods for topical bioequivalence assessment. Unfortunately, according to both industry and academia stakeholders, these efforts are far from flawless, and often upsurge the potential for result variability and a number of other failure modes. This paper offers a comprehensive review of the literature focused on amending regulatory positions concerning the demonstration of (i) extended pharmaceutical equivalence and (ii) equivalence with respect to the efficacy of topical semisolids. The proposed corrective measures are disclosed and critically discussed, as they span from mere demands to widen the acceptance range (e.g., from ±10% to ±20%/±25% for rheology and in vitro release parameters highly prone to batch-to-batch variability) or reassess the optimal number of samples required to reach the desired statistical power, but also rely on specific data modeling or novel statistical approaches.


Author(s):  
Zhentao Liu ◽  
Jinlong Liu

Market globalization necessitates the development of heavy duty diesel engines that can operate at altitudes up to 5000 m without significant performance deterioration. But the current scenario is that existing studies on high altitude effects are still not sufficient or detailed enough to take effective measures. This study applied a single cylinder direct injection diesel engine with simulated boosting pressure to investigate the performance degradation at high altitude, with the aim of adding more knowledge to the literature. Such a research engine was conducted at constant speed and injection strategy but different ambient conditions from sea level to 5000 m in altitude. The results indicated the effects of altitude on engine combustion and performance can be summarized as two aspects. First comes the extended ignition delay at high altitude, which would raise the rate of pressure rise to a point that can exceed the maximum allowable limit and therefore shorten the engine lifespan. The other disadvantage of high-altitude operation is the reduced excess air ratio and gas density inside cylinder. Worsened spray formation and mixture preparation, together with insufficient and late oxidation, would result in reduced engine efficiency, increased emissions, and power loss. The combustion and performance deteriorations were noticeable when the engine was operated above 4000 m in altitude. All these findings support the need for further fundamental investigations of in-cylinder activities of diesel engines working at plateau regions.


2013 ◽  
Vol 457-458 ◽  
pp. 531-535
Author(s):  
Zhong Jian Pan ◽  
Qing Hua He ◽  
Yong Guo ◽  
Yu Ming Zhao ◽  
Jing Yang

The supercharger technology of piston aviation engine determines its flight capabilities, and then establishes a turbocharger simulation model of an aviation piston engine. After simulating the engine ground features and 5000-meter altitude characteristics, and comparing the efficiency of compressor and turbocharger in different environments, after the installation of mechanical supercharger, gas flow has been improved, the cylinder pressure decreased about 10% compared with ground condition and engine altitude state power is restored, even 20,000 feet Power restored to 80%, which can meet the needs of high-altitude flight.


2019 ◽  
Vol 9 (1) ◽  
pp. 600-605 ◽  
Author(s):  
Gabriel Fedorko ◽  
Martin Vasil ◽  
Michaela Bartosova

AbstractIntra-plant transport systems within their operation directly impact on the performance of production systems. For their effective operation, it is, therefore, necessary to realize evaluation of operational performance and effectivity. For the realization of this type of evaluation, in addition to a wide range of sensors that can be difficult for installation and operation, we can also use indirect methods that are equally able to provide reliable operational characteristics. Indirect analytical methods are presented above all by the approach which is based on the use of simulation methods. The method of computer simulation provides a wide range of options for the evaluation of efficiency and performance. The paper describes the use of a simulation model created in the program Tecnomatix Plant Simulation for analyzing the supply of production workplaces within the MilkRun system.


Author(s):  
Roger Slora ◽  
Stian Karlsen ◽  
Per Arne Osborg

There is an increasing demand for subsea electrical power transmission in the oil- and gas industry. Electrical power is mainly required for subsea pumps, compressors and for direct electrical heating of pipelines. The majority of subsea processing equipment is installed at water depths less than 1000 meters. However, projects located offshore Africa, Brazil and in the Gulf of Mexico are reported to be in water depths down to 3000 meters. Hence, Nexans initiated a development programme to qualify a dynamic deep water power cable. The qualification programme was based on DNV-RP-A203. An overall project plan, consisting of feasibility study, concept selection and pre-engineering was outlined as defined in DNV-OSS-401. An armoured three-phase power cable concept assumed suspended from a semi-submersible vessel at 3000 m water depth was selected as qualification basis. As proven cable technology was selected, the overall qualification scope is classified as class 2 according to DNV-RP-A203. Presumed high conductor stress at 3000 m water depth made basis for the identified failure modes. An optimised prototype cable, with the aim of reducing the failure mode risks, was designed based on extensive testing and analyses of various test cables. Analyses confirmed that the prototype cable will withstand the extreme loads and fatigue damage during a service life of 30 years with good margins. The system integrity, consisting of prototype cable and end terminations, was verified by means of tension tests. The electrical integrity was intact after tensioning to 2040 kN, which corresponds to 13 000 m static water depth. A full scale flex test of the prototype cable verified the extreme and fatigue analyses. Hence, the prototype cable is qualified for 3000 m water depth.


1969 ◽  
Vol 6 (03) ◽  
pp. 318-324
Author(s):  
Thomas P. Dunn

This paper describes how a computerized simulation model was utilized to evaluate initially the design and later the performance of the new Steel Fabrication Shop of the Newport News Shipbuilding and Dry Dock Company. Included are descriptions of the model and its development, the shop, and exhibits which are illustrative of model output.


1985 ◽  
Vol 107 (4) ◽  
pp. 530-533
Author(s):  
Peter Dransfield ◽  
D. C. Davis

There are few reported situations in which a drop of liquid will remain intact in ambient conditions for an indefinite period of time. The paper describes a situation where this happens. The phenomenon was noticed during experiments concerned with the development of a novel rotational speed sensor. It proved to be a substantial rather than a passing occurrence.


2020 ◽  
Vol 70 (6) ◽  
pp. 583-589
Author(s):  
Arunachaleswaran Arumugam ◽  
Shyni Thomas ◽  
Muralidhar Madhusudan ◽  
S. Elangovan ◽  
M. Sundararaj

Aircraft electrical system needs to be robust enough to cater for electrical power requirements of all the systems of the aircraft and all the safety/degraded mission critical systems in failure modes. Designing such a robust electrical system for a developmental aircraft program is a challenge. A developmental aircraft during its various phases would involve integration of additional systems and new weapons (in case of fighter aircraft). Integration of newer systems imposes fresh challenges in managing the electrical system architecture especially in failure modes. Weapon integration in a prototype fighter program is dynamic as newer contemporary weapons are developed at faster pace and ever evolving. Power crisis through existing on-board power generation systems in failure mode was felt during an indigenous aircraft development program. A novel idea of introducing a Ram Air Turbine and utilize the power generated during main alternator failure for critical systems was studied. The intention of this paper is to cover the details of the study carried out towards utlisation of such a Ram Air Turbine in landing phase for extraction of energy in case of main alternator failure.


1970 ◽  
Vol 44 (4) ◽  
pp. 387-398 ◽  
Author(s):  
Sorabh Gupta ◽  
PC Tewari

This paper discusses the stochastic analysis and performance evaluation of condensate system of a thermal plant. These opportunities will be identified by evaluation of a simulation model to be built for the condensate system. The present system under study consists of six subsystems A, B, C, D, E, and F arranged in series with two feasible states: working and failed. After drawing transition diagram, differential equations are generated and then a probabilistic simulated simulation model using Markov approach has been developed considering some assumptions. Performance matrix for each subsystem is also developed, which provide various availability levels. On the basis of this study, performance of each subsystem of condensate system is evaluated and then maintenance decisions are made for subsystems. Key words: Transition diagram; Markov approach; Performance matrix; Maintenance decisions. DOI: 10.3329/bjsir.v44i4.4587 Bangladesh J. Sci. Ind. Res. 44(4), 387-398, 2009


Sign in / Sign up

Export Citation Format

Share Document