Complementarity Relationships and Critical Configurations in Rigid-Body Collisions of Planar Kinematic Chains With Smooth External Contacts

2020 ◽  
Vol 87 (12) ◽  
Author(s):  
Yildirim Hurmuzlu

Abstract In this article, we consider a special class of collision problems that are frequently encountered in the field of robotics. Such problems can be described as a kinematic chain with one of its ends striking an external surface, while the remaining ends resting on other surfaces. This type of problem involves complementarity relationships between the normal velocities and impulses at the contacting ends. We present a solution method that takes into account the complementarity conditions at the contacting ends. In addition, we study the critical configurations of particle and rigid-body chains where the impulse wave generated by impact gets blocked before it reaches a contacting end.

1995 ◽  
Vol 62 (3) ◽  
pp. 725-732 ◽  
Author(s):  
D. B. Marghitu ◽  
Y. Hurmuzlu

This article deals with three-dimensional collisions of rigid, kinematic chains with an external surface while in contact with other surfaces. We concentrate on a special class of kinematic chain problems where there are multiple contact points during the impact process. A differential formulation based algorithm is used to obtain solutions that utilize the kinematic, kinetic, and the energetic definitions of the coefficient of restitution. Planar and spatial collisions of a three-link chain with two contact points are numerically studied to compare the outcomes predicted by each approach. Particular emphasis is placed on the relation between the post and pre-impact energies, slippage and rebounds at the contact points, and differences among planar and nearly planar three-dimensional solutions.


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Jing-Shan Zhao ◽  
Fulei Chu ◽  
Zhi-Jing Feng ◽  
Sheng Zhao

This paper focuses on the synthesis of an independent suspension that can guide the wheel to track a straight line when moving up (jounce) and down (rebound). With displacement subgroups, it first synthesizes a rigid body guidance mechanism and verifies the result through screw theory. To simplify and optimize the loads of each kinematic chain of the knuckle, it investigates the static equations and ultimately synthesizes a symmetric redundant-constraint suspension structure, which could not only eliminate the shambling shocks induced by the jumping of wheels but also decrease the abrasion of tires. Theoretically, only one pair of noncoplanar kinematic chains is necessary to realize straight line guidance. However, a second pair of noncoplanar kinematic chains is particularly utilized to improve the load status of the links. Because of the redundant constraints induced by the suspension structures, the whole weight can be significantly reduced compared with the initial one. ADAMS simulations with a set of real parameters indicate that the rear suspension mechanism proposed in this paper can guide the wheel to follow a rectilinear locus during jounce and rebound. Therefore, this kind of independent suspension can improve the ride and handling properties of advanced vehicles.


2014 ◽  
Vol 575 ◽  
pp. 501-506 ◽  
Author(s):  
Shubhashis Sanyal ◽  
G.S. Bedi

Kinematic chains differ due to the structural differences between them. The location of links, joints and loops differ in each kinematic chain to make it unique. Two similar kinematic chains will produce similar motion properties and hence are avoided. The performance of these kinematic chains also depends on the individual topology, i.e. the placement of its entities. In the present work an attempt has been made to compare a family of kinematic chains based on its structural properties. The method is based on identifying the chains structural property by using its JOINT LOOP connectivity table. Nomenclature J - Number of joints, F - Degree of freedom of the chain, N - Number of links, L - Number of basic loops (independent loops plus one peripheral loop).


Author(s):  
Martín A. Pucheta ◽  
Nicolás E. Ulrich ◽  
Alberto Cardona

The graph layout problem arises frequently in the conceptual stage of mechanism design, specially in the enumeration process where a large number of topological solutions must be analyzed. Two main objectives of graph layout are the avoidance or minimization of edge crossings and the aesthetics. Edge crossings cannot be always avoided by force-directed algorithms since they reach a minimum of the energy in dependence with the initial position of the vertices, often randomly generated. Combinatorial algorithms based on the properties of the graph representation of the kinematic chain can be used to find an adequate initial position of the vertices with minimal edge crossings. To select an initial layout, the minimal independent loops of the graph can be drawn as circles followed by arcs, in all forms. The computational cost of this algorithm grows as factorial with the number of independent loops. This paper presents a combination of two algorithms: a combinatorial algorithm followed by a force-directed algorithm based on spring repulsion and electrical attraction, including a new concept of vertex-to-edge repulsion to improve aesthetics and minimize crossings. Atlases of graphs of complex kinematic chains are used to validate the results. The layouts obtained have good quality in terms of minimization of edge crossings and maximization of aesthetic characteristics.


Author(s):  
Jieyu Wang ◽  
Xianwen Kong

A novel construction method is proposed to construct multimode deployable polyhedron mechanisms (DPMs) using symmetric spatial RRR compositional units, a serial kinematic chain in which the axes of the first and the third revolute (R) joints are perpendicular to the axis of the second R joint. Single-loop deployable linkages are first constructed using RRR units and are further assembled into polyhedron mechanisms by connecting single-loop kinematic chains using RRR units. The proposed mechanisms are over-constrained and can be deployed through two approaches. The prism mechanism constructed using two Bricard linkages and six RRR limbs has one degree-of-freedom (DOF). When removing three of the RRR limbs, the mechanism obtains one additional 1-DOF motion mode. The DPMs based on 8R and 10R linkages also have multiple modes, and several mechanisms are variable-DOF mechanisms. The DPMs can switch among different motion modes through transition positions. Prototypes are 3D-printed to verify the feasibility of the mechanisms.


Robotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Fernando Gonçalves ◽  
Tiago Ribeiro ◽  
António Fernando Ribeiro ◽  
Gil Lopes ◽  
Paulo Flores

Forward kinematics is one of the main research fields in robotics, where the goal is to obtain the position of a robot’s end-effector from its joint parameters. This work presents a method for achieving this using a recursive algorithm that builds a 3D computational model from the configuration of a robotic system. The orientation of the robot’s links is determined from the joint angles using Euler Angles and rotation matrices. Kinematic links are modeled sequentially, the properties of each link are defined by its geometry, the geometry of its predecessor in the kinematic chain, and the configuration of the joint between them. This makes this method ideal for tackling serial kinematic chains. The proposed method is advantageous due to its theoretical increase in computational efficiency, ease of implementation, and simple interpretation of the geometric operations. This method is tested and validated by modeling a human-inspired robotic mobile manipulator (CHARMIE) in Python.


2021 ◽  
Vol 12 (2) ◽  
pp. 1061-1071
Author(s):  
Jinxi Chen ◽  
Jiejin Ding ◽  
Weiwei Hong ◽  
Rongjiang Cui

Abstract. A plane kinematic chain inversion refers to a plane kinematic chain with one link fixed (assigned as the ground link). In the creative design of mechanisms, it is important to select proper ground links. The structural synthesis of plane kinematic chain inversions is helpful for improving the efficiency of mechanism design. However, the existing structural synthesis methods involve isomorphism detection, which is cumbersome. This paper proposes a simple and efficient structural synthesis method for plane kinematic chain inversions without detecting isomorphism. The fifth power of the adjacency matrix is applied to recognize similar vertices, and non-isomorphic kinematic chain inversions are directly derived according to non-similar vertices. This method is used to automatically synthesize 6-link 1-degree-of-freedom (DOF), 8-link 1-DOF, 8-link 3-DOF, 9-link 2-DOF, 9-link 4-DOF, 10-link 1-DOF, 10-link 3-DOF and 10-link 5-DOF plane kinematic chain inversions. All the synthesis results are consistent with those reported in literature. Our method is also suitable for other kinds of kinematic chains.


Author(s):  
Yufeng Luo ◽  
Tingli Yang ◽  
Ali Seireg

Abstract A systematic procedure is presented for the structure type synthesis of multiloop spatial kinematic chains with general variable constraints in this paper. The parameters and the structure types of the contracted graphs and the branch chains used to synthesize such kinematic chains are given for kinematic chains with up to four independent loops. The assignments for the constraints values of all the loops in a kinematic chain are discussed. Using these as the basis, the structure types of the multiloop spatial kinematic chains with hybrid constraints could be synthesized.


Sign in / Sign up

Export Citation Format

Share Document