scholarly journals Dynamic Response of a Conceptual Designed Articulated Offshore Wind Turbine

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Pei Zhang ◽  
Yan Li ◽  
Jiayang Gu ◽  
Tianchang Yin ◽  
Zhiqiang Hu ◽  
...  

Abstract Focusing on the 75 m depth offshore area, an articulated foundation is proposed for supporting National Renewable Energy Laboratory (NREL) 5 MW offshore wind turbine (OWT). Through the overall sensitivity check on hydrostatic performance, the main parameters are set to meet the requirements of stability and economy. An in-house code was programmed to simulate the dynamic response of the articulated offshore wind turbine (AOWT). The aerodynamic load on rotating blades and the wind pressure load on tower are calculated based on the blade element momentum theory and the empirical formula, respectively. The hydrodynamic load is simulated by the three-dimensional potential flow theory. The motions of foundation, the aerodynamic performance of the wind turbine, and the loads on the articulated joint are documented in different cases. According to the simulations, the articulated offshore wind turbine shows feasibility to work in the particular area.

Author(s):  
Yan Li ◽  
Zheng Liu ◽  
Yougang Tang ◽  
Xiyang Zhu ◽  
Ruoyu Zhang

Abstract Focus on the 75-meter-depth offshore area, an articulated buoy is proposed for supporting NREL 5 MW offshore wind turbine. Based on the optimization, the main parameters are set for better hydro performance and less environmental loads. According to the quasi-static approach, the intact stability was examined. Then, an in-house code was programmed to simulate the dynamic response of the articulated offshore wind turbine. The aerodynamic load on rotating blades and the wind pressure load on tower are calculated based on the blade element momentum theory and the empirical formula, respectively. The hydrodynamic performance is simulated by the 3-D potential flow theory. The motions of platform, the loads on the articulated hinge and the power generation performance are documented in different cases. According to the simulations, the articulated offshore wind turbine shows good hydrodynamic performance under operation conditions.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2784
Author(s):  
Pei Zhang ◽  
Shugeng Yang ◽  
Yan Li ◽  
Jiayang Gu ◽  
Zhiqiang Hu ◽  
...  

Focusing on the transitional depth offshore area from 50 m to 75 m, types of articulated foundations are proposed for supporting the NREL 5 MW offshore wind turbine. To investigate the dynamic behaviors under various water depths, three articulated foundations were adopted and numerical simulations were conducted in the time domain. An in-house code was chosen to simulate the dynamic response of the articulated offshore wind turbine. The aerodynamic load on rotating blades and the wind pressure load on tower are calculated based on the blade element momentum theory and the empirical formula, respectively. The hydrodynamic load is simulated by 3D potential flow theory. The motions of foundation, the aerodynamic performance of the wind turbine, and the loads on the articulated joint are documented and compared in different cases. According to the simulation, all three articulated offshore wind turbines show great dynamic performance and totally meet the requirement of power generation under the rated operational condition. Moreover, the comparison is based on time histories and spectra among these responses. The result shows that dynamic responses of the shallower one oscillate more severely compared to the other designs.


Author(s):  
Kai Zhang ◽  
Onur Bilgen

Abstract This paper presents a comparison of low- and mid-fidelity aerodynamic modelling of floating offshore wind turbine rotors. The low-fidelity approach employs the conventional Blade Element Momentum theory implemented in AeroDyn of OpenFAST. This model ignores the aerodynamic interactions between different blade elements, and the forces on the blade are determined from the balance between momentum theory and blade element theory. With this method, it is possible to calculate the aerodynamic performance for different settings with low computational cost. For the mid-fidelity approach, the Actuator Line Modeling method implemented in turbinesFoam (an OpenFOAM library) is used. This method is built upon a combination of the blade element theory for modeling the blades, and a Navier-Stokes description of the wake flow field. Thus, it can capture the wake dynamics without resolving the detailed flows near the blades. The aerodynamic performance of the DTU 10 MW reference wind turbine rotor is studied using the two methods. The effects of wind speed, tip speed ratio, and blade pitch angles are assessed. Good agreement is observed between the two methods at low tip speed ratios, while the Actuator Line Modeling method predicts slightly higher power coefficients at high tip speed ratios. In addition, the ability of the Actuator Line Modeling Method to capture the wake dynamics of the rotor in an unsteady inflow is demonstrated. In the future, the multi-fidelity aerodynamic modules developed in this paper will be integrated with the hydro-kinematics and hydro-dynamics of a floating platform and a mooring system, to achieve a fully coupled framework for the analysis and design optimization of floating offshore wind turbines.


Author(s):  
G. K. V. Ramachandran ◽  
H. Bredmose ◽  
J. N. Sørensen ◽  
J. J. Jensen

A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency- and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison’s equation, aerodynamic loads are modelled by means of unsteady Blade-Element-Momentum (BEM) theory, including Glauert correction for high values of axial induction factor, dynamic stall, dynamic wake and dynamic yaw. The aerodynamic model takes into account the wind shear and turbulence effects. For a representative geographic location, platform responses are obtained for a set of wind and wave climatic conditions. The platform responses show an influence from the aerodynamic loads, most clearly through a quasi-steady mean surge and pitch response associated with the mean wind. Further, the aerodynamic loads show an influence from the platform motion through more fluctuating rotor loads, which is a consequence of the wave-induced rotor dynamics. In the absence of a controller scheme for the wind turbine, the rotor torque fluctuates considerably, which induces a growing roll response especially when the wind turbine is operated nearly at the rated wind speed. This can be eliminated either by appropriately adjusting the controller so as to regulate the torque or by optimizing the floater or tendon dimensions, thereby limiting the roll motion. Loads and coupled responses are predicted for a set of load cases with different wave headings. Based on the results, critical load cases are identified and discussed. As a next step (which is not presented here), the dynamic model for the substructure is therefore being coupled to an advanced aero-elastic code Flex5, Øye (1996), which has a higher number of DOFs and a controller module.


Author(s):  
Chinsu Mereena Joy ◽  
Anitha Joseph ◽  
Lalu Mangal

Demand for renewable energy sources is rapidly increasing since they are able to replace depleting fossil fuels and their capacity to act as a carbon neutral energy source. A substantial amount of such clean, renewable and reliable energy potential exists in offshore winds. The major engineering challenge in establishing an offshore wind energy facility is the design of a reliable and financially viable offshore support for the wind turbine tower. An economically feasible support for an offshore wind turbine is a compliant platform since it moves with wave forces and offer less resistance to them. Amongst the several compliant type offshore structures, articulated type is an innovative one. It is flexibly linked to the seafloor and can move along with the waves and restoring is achieved by large buoyancy force. This study focuses on the experimental investigations on the dynamic response of a three-legged articulated structure supporting a 5MW wind turbine. The experimental investigations are done on a 1: 60 scaled model in a 4m wide wave flume at the Department of Ocean Engineering, Indian Institute of Technology, Madras. The tests were conducted for regular waves of various wave periods and wave heights and for various orientations of the platform. The dynamic responses are presented in the form of Response Amplitude Operators (RAO). The study results revealed that the proposed articulated structure is technically feasible in supporting an offshore wind turbine because the natural frequencies are away from ocean wave frequencies and the RAOs obtained are relatively small.


Author(s):  
Tomoaki Utsunomiya ◽  
Shigeo Yoshida ◽  
Soichiro Kiyoki ◽  
Iku Sato ◽  
Shigesuke Ishida

In this paper, dynamic response of a Floating Offshore Wind Turbine (FOWT) with spar-type floating foundation at power generation is presented. The FOWT mounts a 100kW wind turbine of down-wind type, with the rotor’s diameter of 22m and a hub-height of 23.3m. The floating foundation consists of PC-steel hybrid spar. The upper part is made of steel whereas the lower part made of prestressed concrete segments. The FOWT was installed at the site about 1km offshore from Kabashima Island, Goto city, Nagasaki prefecture on June 11th, 2012. Since then, the field measurement had been made until its removal in June 2013. In this paper, the dynamic behavior during the power generation is presented, where the comparison with the numerical simulation by aero-hydro-servo-mooring dynamics coupled program is made.


2021 ◽  
Author(s):  
Zhenju Chuang ◽  
Chunzheng Li ◽  
Shewen Liu ◽  
Yu Lu

Author(s):  
Mohammed Khair Al-Solihat ◽  
Meyer Nahon ◽  
Kamran Behdinan

This paper presents a rigid multibody dynamic model to simulate the dynamic response of a spar floating offshore wind turbine (FOWT). The system consists of a spar floating platform, the moorings, the wind turbine tower, nacelle, and the rotor. The spar platform is modeled as a six degrees-of-freedom (6DOFs) rigid body subject to buoyancy, hydrodynamic and moorings loads. The wind turbine tower supports rigid nacelle and rotor at the tip. The rigid rotor is modeled as a disk spinning around its axis and subject to the aerodynamic load. The generator torque control law is incorporated into the system dynamics to capture the rotor spinning speed response when the turbine is operating below the rated wind speed. The equations of motions are derived using Lagrange's equation in terms of the platform quasi-coordinates and rotor spin speed. The external loads due to hydrostatics, hydrodynamics, and aerodynamics are formulated and incorporated into the equations of motion. The dynamic simulations of the spar FOWT are performed for three load cases to examine the system eigen frequencies, free decay response, and response to a combined wave and wind load. The results obtained from the present model are validated against their counterparts obtained from other simulation tools, namely, FAST, HAWC2, and Bladed, with excellent agreement. Finally, the influence of the rotor gyroscopic moment on the system dynamics is investigated.


Sign in / Sign up

Export Citation Format

Share Document