scholarly journals Cross-comparative analysis of loads and power of pitching floating offshore wind turbine rotors using frequency-domain Navier-Stokes CFD and blade element momentum theory

2020 ◽  
Vol 1618 ◽  
pp. 052016
Author(s):  
A. Ortolani ◽  
G. Persico ◽  
J. Drofelnik ◽  
A. Jackson ◽  
M.S. Campobasso
Author(s):  
Kai Zhang ◽  
Onur Bilgen

Abstract This paper presents a comparison of low- and mid-fidelity aerodynamic modelling of floating offshore wind turbine rotors. The low-fidelity approach employs the conventional Blade Element Momentum theory implemented in AeroDyn of OpenFAST. This model ignores the aerodynamic interactions between different blade elements, and the forces on the blade are determined from the balance between momentum theory and blade element theory. With this method, it is possible to calculate the aerodynamic performance for different settings with low computational cost. For the mid-fidelity approach, the Actuator Line Modeling method implemented in turbinesFoam (an OpenFOAM library) is used. This method is built upon a combination of the blade element theory for modeling the blades, and a Navier-Stokes description of the wake flow field. Thus, it can capture the wake dynamics without resolving the detailed flows near the blades. The aerodynamic performance of the DTU 10 MW reference wind turbine rotor is studied using the two methods. The effects of wind speed, tip speed ratio, and blade pitch angles are assessed. Good agreement is observed between the two methods at low tip speed ratios, while the Actuator Line Modeling method predicts slightly higher power coefficients at high tip speed ratios. In addition, the ability of the Actuator Line Modeling Method to capture the wake dynamics of the rotor in an unsteady inflow is demonstrated. In the future, the multi-fidelity aerodynamic modules developed in this paper will be integrated with the hydro-kinematics and hydro-dynamics of a floating platform and a mooring system, to achieve a fully coupled framework for the analysis and design optimization of floating offshore wind turbines.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Pei Zhang ◽  
Yan Li ◽  
Jiayang Gu ◽  
Tianchang Yin ◽  
Zhiqiang Hu ◽  
...  

Abstract Focusing on the 75 m depth offshore area, an articulated foundation is proposed for supporting National Renewable Energy Laboratory (NREL) 5 MW offshore wind turbine (OWT). Through the overall sensitivity check on hydrostatic performance, the main parameters are set to meet the requirements of stability and economy. An in-house code was programmed to simulate the dynamic response of the articulated offshore wind turbine (AOWT). The aerodynamic load on rotating blades and the wind pressure load on tower are calculated based on the blade element momentum theory and the empirical formula, respectively. The hydrodynamic load is simulated by the three-dimensional potential flow theory. The motions of foundation, the aerodynamic performance of the wind turbine, and the loads on the articulated joint are documented in different cases. According to the simulations, the articulated offshore wind turbine shows feasibility to work in the particular area.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4138
Author(s):  
Kwansu Kim ◽  
Hyunjong Kim ◽  
Hyungyu Kim ◽  
Jaehoon Son ◽  
Jungtae Kim ◽  
...  

In this study, a resonance avoidance control algorithm was designed to address the tower resonance problem of a semi-submersible floating offshore wind turbine (FOWT) and the dynamic performance of the wind turbine, floater platform, and mooring lines at two exclusion zone ranges were evaluated. The simulations were performed using Bladed, a commercial software for wind turbine analysis. The length of simulation for the analysis of the dynamic response of the six degrees of freedom (DoF) motion of the floater platform under a specific load case was 3600 s. The simulation results are presented in terms of the time domain, frequency domain, and using statistical analysis. As a result of applying the resonance avoidance control algorithm, when the exclusion zone range was ±0.5 rpm from the resonance rpm, the overall performance of the wind turbine was negatively affected, and when the range was sufficiently wide at ±1 rpm, the mean power was reduced by 0.04%, and the damage equivalent load of the tower base side–side bending moment was reduced by 14.02%. The tower resonance problem of the FOWT caused by practical limitations in design and cost issues can be resolved by changing the torque control algorithm.


Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


Sign in / Sign up

Export Citation Format

Share Document