scholarly journals Analysis of Thermoacoustic Modes in Can-Annular Combustors Using Effective Bloch-Type Boundary Conditions

Author(s):  
Jakob von Saldern ◽  
Alessandro Orchini ◽  
Jonas Moeck

Abstract Heavy-duty gas turbines are commonly designed with can-annular combustors, in which all flames are physically separated. Acoustically, however, the cans communicate via the upstream located compressor plenum, or at the downstream gaps found at the transition to the turbine inlet. In the present study, a coupling condition that is based on a Rayleigh conductivity and acoustic flux conservation is derived. It enables acoustic communication between adjacent cans, in which one-dimensional acoustic waves propagate. In addition, because can-annular systems commonly feature a discrete rotational symmetry, the acoustic field can be expressed as a Bloch-periodic wave in the azimuthal direction. We demonstrate how the coupling conditions resulting in a combustion system with $N$ cans can be expressed as an effective impedance for a single can. By means of this Bloch-type boundary condition, the thermoacoustics of a can-annular system can be analyzed considering only one can, thus reducing the size of the problem by a factor of N. Using this method, we investigate in frequency domain the effect of the coupling strength of a generic can-annular combustor consisting of 12 identical cans, which are connected at the downstream end. We describe generic features of can-annular systems and derive results on the frequency response of the cans at various Bloch numbers in the low-frequency and high-frequency limits. Furthermore, the formation of eigenvalue clusters with eigenvalues of close frequency and growth rate, but very different mode shapes is discussed.

Author(s):  
Jakob G. R. von Saldern ◽  
Alessandro Orchini ◽  
Jonas P. Moeck

Abstract Heavy-duty gas turbines are commonly designed with canannular combustors, in which all flames are physically separated. Acoustically, however, the cans communicate via the upstream located compressor plenum, or at the downstream gaps found at the transition to the turbine inlet. In the present study, a coupling condition that is based on a Rayleigh conductivity and acoustic flux conservation is derived. It enables acoustic communication between adjacent cans, in which one-dimensional acoustic waves propagate. In addition, because can-annular systems commonly feature a discrete rotational symmetry, the acoustic field can be expressed as a Bloch-periodic wave in the azimuthal direction. We demonstrate how the coupling conditions resulting in a combustion system with N cans can be expressed as an effective impedance for a single can. By means of this Bloch-type boundary condition, the thermoacoustics of a can-annular system can be analyzed considering only one can, thus reducing the size of the problem by a factor of N. Using this method, we investigate in frequency domain the effect of the coupling strength of a generic can-annular combustor consisting of 12 identical cans, which are connected at the downstream end. We describe generic features of can-annular systems that can be efficiently addressed with this framework and derive results on the frequency response of the cans at various Bloch numbers in the low-frequency and high-frequency limits. Furthermore, the formation of eigenvalue clusters with eigenvalues of close frequency and growth rate, but very different mode shapes is discussed.


2021 ◽  
Author(s):  
Jakob G. R. von Saldern ◽  
Alessandro Orchini ◽  
Jonas P. Moeck

Abstract Can-annular combustors can feature azimuthal instabilities even if the acoustic coupling between the individual cans is weak. Recently, various studies have focused on modeling the acoustic communication between adjacent cans in can-annular systems. In this study, a coupling model is presented that, in contrast to previous models, includes the effect of density fluctuations, mean flow, and dissipative effects at the connection gaps. By assuming plane acoustic waves inside each can and exploiting the discrete rotational symmetry of the can-annular system, the acoustic can-to-can interaction can be represented by an effective Bloch-type impedance. A single can modeled with the effective impedance at the downstream end emulates the acoustic response of the entire can-annular arrangement. We then propose the idea of installing a liner just upstream of the first turbine stage to damp azimuthal instabilities. By using the proposed can-to-can coupling model, we discuss in detail the effect that the impedance of the liner has on the effective reflection coefficient for different Bloch wavenumbers. In the low-frequency limit, we derive an analytical condition for achieving maximum damping at a specific Bloch-number. We show that the damping of azimuthal modes depends on the porosity of the liner, mean flow parameters and the Bloch-structure of the mode. These results suggest the possibility of targeting the damping of modes of certain azimuthal order by geometric variations of the liner or of the connection gap. As an exemplary application of the theory, we set up a network model of a generic industrial 12-can combustor and investigate a cluster of acoustic and thermoacoustic eigenvalues for a varying liner porosity. The findings of this study provide a deeper understanding of the mechanisms that drive the can-to-can acoustic communication, and open the path for devising passive damping strategies aimed at stabilizing specific modes in can-annular combustors.


Author(s):  
Jakob von Saldern ◽  
Alessandro Orchini ◽  
Jonas Moeck

Abstract Recently, various studies have focused on modeling the acoustic communication between adjacent cans in can-annular systems. In this study, a coupling model is presented that, in contrast to previous models, includes the effect of density fluctuations, mean flow, and dissipative effects at the connection gaps. By assuming plane acoustic waves inside each can and exploiting the discrete rotational symmetry of the can-annular system, the acoustic can-to-can interaction can be represented by an effective Bloch-type impedance. A single can modeled with the effective impedance at the downstream end emulates the acoustic response of the entire can-annular arrangement. We then propose the idea of installing a liner just upstream of the first turbine stage to damp azimuthal instabilities and discuss in detail the effect that the impedance of the liner has on the effective reflection coefficient for different Bloch wavenumbers. In the low-frequency limit, we derive an analytical condition for achieving maximum damping at a specific Bloch-number. The damping of azimuthal modes depends on the porosity of the liner, mean flow parameters and the Bloch-structure of the mode. These results suggest the possibility of targeting the damping of modes of certain azimuthal order by geometric variations of the liner or of the connection gap. The findings of this study provide a deeper understanding of the mechanisms that drive the can-to-can acoustic communication, and open the path for devising passive damping strategies aimed at stabilizing specific modes in can-annular combustors.


Author(s):  
Georg A. Mensah ◽  
Jonas P. Moeck

Most annular combustors feature a discrete rotational symmetry so that the full configuration can be obtained by copying one burner–flame segment a certain number of times around the circumference. A thermoacoustic model based on the Helmholtz equation then admits special solutions of the so-called Bloch type that can be obtained by considering one segment only. We show that a significant reduction in computational effort for the determination of thermoacoustic modes can be achieved by exploiting this concept. The framework is applicable even in complex cases including a non-homogeneous temperature field and a frequency-dependent, spatially distributed flame response. A parametric study on a three-dimensional combustion chamber model is conducted using both the full scale chamber simulation and a one-segment model with the appropriate Bloch-type boundary conditions. The results for both computations are compared in terms of mode frequencies and growth rates as well as the corresponding mode shapes. This comparison demonstrates the benefits of the Bloch-wave based analysis. It is further shown that even the effect of circumferential asymmetries can be assessed based on computations of one burner–flame segment only by resorting to spectral perturbation theory.


Author(s):  
Simon R. Stow ◽  
Ann P. Dowling

Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. Acoustic waves produce fluctuations in heat release, for instance by perturbing the fuel–air ratio or flame shape. These heat fluctuations will in turn generate more acoustic waves and in some situations self-sustained oscillations can result. A linear model for thermoacoustic oscillations in LPP combustors is described. A thin annular combustor is assumed and so circumferential modes are included but radial dependence is ignored. The geometry consists of straight ducts joined by short regions of area change. Perturbations to the flow can be thought of as a combination of acoustic, entropy and vorticity waves. The development of these waves along the straight ducts is found using a propagation matrix approach. At the entrance to the combustion chamber, a flame model is used in which the unsteady heat release is related to fluctuations in fuel–air ratio. Various possible inlet and outlet conditions are described. The model is then applied to a simplified example based on a sector rig. The resonant modes are found numerically and compared with the frequencies that occurred in experiments.


Author(s):  
Georg A. Mensah ◽  
Giovanni Campa ◽  
Jonas P. Moeck

Most annular combustors feature a discrete rotational symmetry so that the full configuration can be obtained by copying one burner-flame segment a certain number of times around the circumference. A thermoacoustic model based on the Helmholtz equation then admits special solutions of the so-called Bloch type that can be obtained by considering one segment only. We show that a significant reduction in computational effort for the determination of thermoacoustic modes can be achieved by exploiting this concept. The framework is applicable even in complex cases including an inhomogeneous temperature field and a frequency-dependent, spatially distributed flame response. A parametric study on a three-dimensional combustion chamber model is conducted using both the full-scale chamber simulation and a one-segment model with the appropriate Bloch-type boundary conditions. The results for both computations are compared in terms of mode frequencies and growth rates as well as the corresponding mode shapes. The same is done for a more complex industrial configuration. These comparisons demonstrate the benefits of the Bloch-wave based analysis.


Author(s):  
A. Arroyo ◽  
M. McLorn ◽  
M. Fabian ◽  
M. White ◽  
A. I. Sayma

Rotor-dynamics of Micro Gas Turbines (MGTs) under 30 kW have been a critical issue for the successful development of reliable engines during the last decades. Especially, no consensus has been reached on a reliable MGT arrangement under 10 kW with rotational speeds above 100,000 rpm, making the understanding of the rotor-dynamics of these high speed systems an important research area. This paper presents a linear rotor-dynamic analysis and comparison of three mechanical arrangements of a 6 kW MGT intended for utilising Concentrated Solar Power (CSP) using a parabolic dish concentrator. This application differs from the usual fuel burning MGT in that it is required to operate at a wider operating speed range. The objective is to find an arrangement that allows reliable mechanical operation through better understanding of the rotor dynamics for a number of alternative shaft-bearings arrangements. Finite Element Analysis (FEA) was used to produce Campbell diagrams and to determine the critical speeds and mode shapes. Experimental hammer tests using a new approach based on optical sensing technology were used to validate the rotor-dynamic models. The FEA simulation results for the natural frequencies of a shaft arrangement were within 5% of the measurements, while the deviation for the shaft-bearings arrangement increased up to 16%.


2021 ◽  
pp. 136943322110384
Author(s):  
Xingyu Fan ◽  
Jun Li ◽  
Hong Hao

Vibration based structural health monitoring methods are usually dependent on the first several orders of modal information, such as natural frequencies, mode shapes and the related derived features. These information are usually in a low frequency range. These global vibration characteristics may not be sufficiently sensitive to minor structural damage. The alternative non-destructive testing method using piezoelectric transducers, called as electromechanical impedance (EMI) technique, has been developed for more than two decades. Numerous studies on the EMI based structural health monitoring have been carried out based on representing impedance signatures in frequency domain by statistical indicators, which can be used for damage detection. On the other hand, damage quantification and localization remain a great challenge for EMI based methods. Physics-based EMI methods have been developed for quantifying the structural damage, by using the impedance responses and an accurate numerical model. This article provides a comprehensive review of the exciting researches and sorts out these approaches into two categories: data-driven based and physics-based EMI techniques. The merits and limitations of these methods are discussed. In addition, practical issues and research gaps for EMI based structural health monitoring methods are summarized.


Author(s):  
Manfred Sieminski ◽  
Manfred Schneider

Low Frequency Noise at Gas Turbines A natural gas compressor station that was equipped with Hispano Suiza Turbines THM 1202 emitted high intensity noise between 20 Hz and 40 Hz, causing window vibrations and standing waves within the living rooms of a nearby residential area. Since additional sound attenuation by increasing the volume of the exhaust silencers was impossible, further investigations were carried out to explain the mechanism of this low frequency noise emission. By changing the flame pattern inside the combustion chambers of the turbines it was possible to achieve a remarkable reduction at 31.5 Hz amounting to 15 dB. The investigation procedure leading to the final results will be the subject of this presentation.


Sign in / Sign up

Export Citation Format

Share Document