On Using a Low-density Flash Lidar for Road Vehicle Tracking

Author(s):  
Vimal Kumar A R ◽  
Shankar Coimbatore Subramanian ◽  
Rajesh Rajamani

Abstract This study uses a low-density solid-state flash lidar for estimating the trajectories of road vehicles in vehicle collision avoidance applications. Low-density flash lidars are inexpensive compared to the commonly used radars and pointcloud lidars, and have attracted the attention of vehicle manufacturers recently. However, tracking road vehicles using the sparse data provided by such sensors is challenging due to the few reflected measurement points obtained. In this paper, such challenges in the use of low-density flash lidars are identified and estimation algorithms to handle the same are presented. A method to use the amplitude information provided by the sensor for better localization of targets is evaluated using both physics-based simulations and experiments. A two-step hierarchical clustering algorithm is then employed to group multiple detections from a single object into one measurement, which is then associated with the corresponding object using a Joint Integrated Probabilistic Data Association (JIPDA) algorithm. A Kalman filter is used to estimate the longitudinal and lateral motion variables and the results are presented, which show that good tracking, especially in the lateral direction, can be achieved using the proposed algorithm despite the sparse measurements provided by the sensor.

2021 ◽  
pp. 108360
Author(s):  
Vimal Kumar ◽  
Shankar C. Subramanian ◽  
Rajesh Rajamani

2021 ◽  
Author(s):  
Vimal Kumar ◽  
Shankar C. Subramanian ◽  
Rajesh Rajamani

Author(s):  
Mohana Priya K ◽  
Pooja Ragavi S ◽  
Krishna Priya G

Clustering is the process of grouping objects into subsets that have meaning in the context of a particular problem. It does not rely on predefined classes. It is referred to as an unsupervised learning method because no information is provided about the "right answer" for any of the objects. Many clustering algorithms have been proposed and are used based on different applications. Sentence clustering is one of best clustering technique. Hierarchical Clustering Algorithm is applied for multiple levels for accuracy. For tagging purpose POS tagger, porter stemmer is used. WordNet dictionary is utilized for determining the similarity by invoking the Jiang Conrath and Cosine similarity measure. Grouping is performed with respect to the highest similarity measure value with a mean threshold. This paper incorporates many parameters for finding similarity between words. In order to identify the disambiguated words, the sense identification is performed for the adjectives and comparison is performed. semcor and machine learning datasets are employed. On comparing with previous results for WSD, our work has improvised a lot which gives a percentage of 91.2%


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 370
Author(s):  
Shuangsheng Wu ◽  
Jie Lin ◽  
Zhenyu Zhang ◽  
Yushu Yang

The fuzzy clustering algorithm has become a research hotspot in many fields because of its better clustering effect and data expression ability. However, little research focuses on the clustering of hesitant fuzzy linguistic term sets (HFLTSs). To fill in the research gaps, we extend the data type of clustering to hesitant fuzzy linguistic information. A kind of hesitant fuzzy linguistic agglomerative hierarchical clustering algorithm is proposed. Furthermore, we propose a hesitant fuzzy linguistic Boole matrix clustering algorithm and compare the two clustering algorithms. The proposed clustering algorithms are applied in the field of judicial execution, which provides decision support for the executive judge to determine the focus of the investigation and the control. A clustering example verifies the clustering algorithm’s effectiveness in the context of hesitant fuzzy linguistic decision information.


2021 ◽  
Vol 13 (3) ◽  
pp. 1089
Author(s):  
Hailin Zheng ◽  
Qinyou Hu ◽  
Chun Yang ◽  
Jinhai Chen ◽  
Qiang Mei

Since the spread of the coronavirus disease 2019 (COVID-19) pandemic, the transportation of cargo by ship has been seriously impacted. In order to prevent and control maritime COVID-19 transmission, it is of great significance to track and predict ship sailing behavior. As the nodes of cargo ship transportation networks, ports of call can reflect the sailing behavior of the cargo ship. Accurate hierarchical division of ports of call can help to clarify the navigation law of ships with different ship types and scales. For typical cargo ships, ships with deadweight over 10,000 tonnages account for 95.77% of total deadweight, and 592,244 berthing ships’ records were mined from automatic identification system (AIS) from January to October 2020. Considering ship type and ship scale, port hierarchy classification models are constructed to divide these ports into three kinds of specialized ports, including bulk, container, and tanker ports. For all types of specialized ports (considering ship scale), port call probability for corresponding ship type is higher than other ships, positively correlated with the ship deadweight if port scale is bigger than ship scale, and negatively correlated with the ship deadweight if port scale is smaller than ship scale. Moreover, port call probability for its corresponding ship type is positively correlated with ship deadweight, while port call probability for other ship types is negatively correlated with ship deadweight. Results indicate that a specialized port hierarchical clustering algorithm can divide the hierarchical structure of typical cargo ship calling ports, and is an effective method to track the maritime transmission path of the COVID-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document