Control of Vibratory MEMS Gyroscope with the Drive Mode Excited Through Parametric Resonance

2021 ◽  
pp. 1-34
Author(s):  
Tamir Perl ◽  
Ronen Maimon ◽  
Slava Krylov ◽  
Nahum Shimkin

Abstract In this paper we present a control strategy for a MEMS gyroscope with a drive mode excited through parametric resonance. The reduced order two degrees of freedom model of the device is built and the drive mode control is implemented using Phase Locked Loop (PLL) and Automatic Gain Control (AGC) loops. A sense mode vibration control algorithm is developed as well for enhanced sensor performance. The analysis of the drive mode control loops is conducted using the multiple scales method. The robustness of the suggested control loops to parameters perturbation is demonstrated using the model. A simplified linear model of the control loops is shown to predict the device behavior with good accuracy.

Author(s):  
Michael Xie ◽  
Sangtak Park ◽  
Eihab Abdel-Rahman ◽  
Mustafa Yavuz

This paper describes an analog actuation circuit for a novel frequency-modulated MEMS gyroscope. The circuit provides an amplitude-modulated (AM) signal as the input into a RLC resonant drive circuit, which drives the gyroscope. The actuation system is composed an automatic gain control (AGC) loop, a low pass filter, an amplitude modulation component and a resonant drive circuit. The AM signal is composed of a modulating signal that excite a natural frequency of gyroscope drive mode and a carrier signal with a frequency corresponding to the electrical resonant frequency of the RLC circuit. Both feedforward and feedback AGC configurations are used to stabilize the envelope of the signal. However, the breadboard implementations of the feedforward and feedback circuits in their current configurations have similar signal to noise ratio to that of the function generator. To improve the actuation circuit performance, we plan to include the resonant drive circuit within the AGC feedback loop and implement the actuation circuit on PCB.


Author(s):  
Aleksei Lukin ◽  
Dmitry Indeitsev ◽  
Ivan Popov ◽  
Yakov Belyaev

The work is devoted to the study of a MEMS resonator dynamics under the action of phase-locked and automatic gain control loops. Particular attention is directed to the study of the nonlinearity factor of the resonator elastic restoring force. It was found that the determination of control system parameters based on the stability analysis of the operating resonant mode, in the general case, does not provide the required phase adjustment and stabilization of the oscillation amplitude. Stable multifrequency modes of oscillations are found, an analytical study of the mechanisms of their appearance and evolution is carried out under variation of the key parameters of the system. The real regions of the control system stable operation are determined (which do not coincide, as was found, with the regions of stability of the operating resonant mode, due to the presence of hidden attractors in the phase space of the system). A methodology has been developed for identifying such areas of stable operation. A significant complication of the structure of possible motions in the system with an increase in the Q-factor of the resonator is revealed.


2021 ◽  
Vol 11 (13) ◽  
pp. 5793
Author(s):  
Bartosz Dominikowski

The accuracy of current measurements can be increased by appropriate amplification of the signal to within the measurement range. Accurate current measurement is important for energy monitoring and in power converter control systems. Resistance and inductive current transducers are used to measure the major current in AC/DC power converters. The output value of the current transducer depends on the load motor, and changes across the whole measurement range. Modern current measurement circuits are equipped with operational amplifiers with constant or programmable gain. These circuits are not able to measure small input currents with high resolution. This article proposes a precise loop gain system that can be implemented with various algorithms. Computer analysis of various automatic gain control (AGC) systems proved the effectiveness of the Mamdani controller, which was implemented in an MCU (microprocessor). The proposed fuzzy controller continuously determines the value of the conversion factor. The system also enables high resolution measurements of the current emitted from small electric loads (≥1 A) when the electric motor is stationary.


Sign in / Sign up

Export Citation Format

Share Document