Design of Contact-aided Compliant Flexure Hinge Mechanism Using Superelastic Nitinol

2021 ◽  
pp. 1-19
Author(s):  
Zhongyuan Ping ◽  
Tianci Zhang ◽  
Chi Zhang ◽  
Jianbin Liu ◽  
Siyang Zuo

Abstract This paper presents a novel miniature contact-aided compliant mechanism (CCM) that includes flexure hinges and contact-aided structures. This continuum mechanism comprises a nickel–titanium alloy (Nitinol) tube with CCM cut via laser micromachining and actuated using wires bending from −80° to +80° in four directions. The proposed CCM has the following merits: perfect capacity for deflection around the centroid, a self-backbone, and improved torsional as well as tensile strengths. Further, it is pre-assembled. First, kinematic and static models are used to predict the bending behaviour of the mechanism. Thereafter, the maximum strain is evaluated using finite element analysis (FEA) then compared with the static models. Finally, the performances of the mechanism are characterized by experiments. The results validate the proposed models and demonstrate that the torsional and tensile strengths of the proposed CCM increased by more than 100% and 30%, respectively, compared with those of conventional non-CCMs with a similar fatigue life. Moreover, with the integrated forceps and probe, the proposed mechanism can achieve object transfer and square trajectory scanning of the targeted location. These experimental results demonstrate the potential clinical value of the proposed mechanism and provide important insights into the design of long and flexible instruments for endoscopic surgery.

2012 ◽  
Vol 490-495 ◽  
pp. 1104-1108 ◽  
Author(s):  
Ming Cai Shan ◽  
Wei Ming Wang ◽  
Shu Yuan Ma ◽  
Shuang Liu

To increase the stroke of precision positioning system, a novel series compliant mechanism is presented which is based on elliptical flexure hinges. Pseudo-rigid-body model and energy method are applied to establish the theoretical model of stiffness and maximum stress, which are critical parameters for the large stroke compliant mechanism. The relationships are analyzed between geometric parameters of the series complaint mechanism, stiffness and maximum stress. According that, the series compliant mechanism is designed with the stroke more than 5mm and stiffness less than 3.2N/mm. The difference is less than 5% between the results of finite element analysis and theoretical model computation, which proves the correctness of the application design.


Author(s):  
S. Coemert ◽  
M. Olmeda ◽  
J. Fuckner ◽  
C. Rehekampff ◽  
S. V. Brecht ◽  
...  

In our group, we are developing flexure hinge based manipulators made of nitinol for minimally invasive surgery. On the one hand, sufficient flexibility is required from flexure hinges to be able to cover the surgical workspace. On the other hand, the bending amount of the flexure hinges has to be limited below the yielding point to ensure a safe operation. As a result of these considerations, it has to be questioned how much bending angle a nitinol flexure hinge with given geometric dimensions can provide without being subject to plastic deformation. Due to the nonlinearities resulting from large deflections and the material itself, the applicability of the suggested approaches in the literature regarding compliance modeling of flexure hinges is doubtful. Therefore, a series of experiments was conducted in order to characterize the rectangular cross section nitinol flexure hinges regarding the flexibility-strength trade-off. The nitinol flexure hinge samples were fabricated by wire electrical discharge machining in varying thicknesses while keeping the length constant and in varying lengths while keeping the thickness constant. The samples were loaded and unloaded incrementally until deflections beyond visible plastic deformation occured. Each pose in loaded and unloaded states was recorded by means of a digital microscope. The deflection angles yielding to permanent set values corresponding to 0.1% strain were measured and considered as elastic limit. A quasilinear correlation between maximum elastic deflection angle and length-to-thickness ratio was identified. Based on this correlation, a minimal model was determined to be a limit for a secure design. The proposed guideline was verified by additional measurements with additional samples of random dimensions and finite element analysis.


Author(s):  
K-B Choi

This paper presents a novel equation of motion for flexure hinge-based mechanisms. The conventional equation of motion presented in previous work does not adequately describe the behaviours of rigid bodies for the following reasons: firstly, rotational directions for a transformed stiffness lack consistency at the two ends of a flexure hinge; secondly, the length of the flexure hinge is not considered in the equation. The equation of motion proposed in this study solves these problems. Modal analyses are carried out using the proposed equation of motion, the conventional equation of motion found in previous work, and a finite element method. The results show that the proposed equation of motion describes the behaviours of the rigid bodies better than the conventional equation of motion does.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Lin Cao ◽  
Allan T. Dolovich ◽  
Wenjun (Chris) Zhang

This paper proposes a topology optimization framework to design compliant mechanisms with a mixed mesh of both beams and flexure hinges for the design domain. Further, a new type of finite element, i.e., super flexure hinge element, was developed to model flexure hinges. Then, an investigation into the effects of the location and size of a flexure hinge in a compliant lever explains why the point-flexure problem often occurs in the resulting design via topology optimization. Two design examples were presented to verify the proposed technique. The effects of link widths and hinge radii were also investigated. The results demonstrated that the proposed meshing scheme and topology optimization technique facilitate the rational decision on the locations and sizes of beams and flexure hinges in compliant mechanisms.


2016 ◽  
Vol 7 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Zhijiang Du ◽  
Miao Yang ◽  
Wei Dong

Abstract. Flexure hinges made of superelastic materials is a promising candidate to enhance the movability of compliant mechanisms. In this paper, we focus on the multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge. The objective is to determine a set of optimal geometric parameters that maximizes the motion range and the relative compliance of the flexure hinge and minimizes the relative rotation error during the deformation as well. Firstly, the paper presents a new type of ellipse-parabola shaped flexure hinge which is constructed by an ellipse arc and a parabola curve. Then, the static responses of superelastic flexure hinges are solved via non-prismatic beam elements derived by the co-rotational approach. Finite element analysis (FEA) and experiment tests are performed to verify the modeling method. Finally, a multi-objective optimization is performed and the Pareto frontier is found via the NSGA-II algorithm.


2002 ◽  
Vol 124 (3) ◽  
pp. 479-484 ◽  
Author(s):  
Nicolae Lobontiu ◽  
Jeffrey S. N. Paine

The paper introduces the circular cross-section corner-filleted flexure hinges as connectors in three-dimensional compliant mechanism applications. Compliance factors are derived analytically for bending, axial loading and torsion. A circular cross-section corner-filleted flexure hinge belongs to a domain delimited by the cylinder (no fillet) and the right circular cross-section flexure hinge (maximum fillet radius). The analytical model predictions are confirmed by finite element simulation and experimental measurements. The circular cross-section corner-filleted flexure hinges are characterized in terms of their compliance, precision of rotation and stress levels.


Author(s):  
Moataz M. Elsisy ◽  
Yasser Anis ◽  
Mustafa Arafa ◽  
Chahinaz Saleh

We present a symmetric five-bar compliant mechanism for the displacement amplification of mechanical vibration. When the proposed mechanism is connected to an energy harvester, amplification of the input excitation vibration amplitude leads to an increase in the harvested power. Displacements in the compliant mechanism are caused by deflections in its flexure hinges. The flexure hinges we use are either of the right-circular, or the corner-filleted types. The mechanism is analyzed using energy methods. The displacement amplification was verified analytically and numerically using a finite element model. Through our model we present relations governing the displacement amplification in terms of the design parameters, such as the geometry of the mechanism, the flexure hinges dimensions, in addition to the load caused by the harvester. The effects of the flexure hinge dimensions on displacement amplification, are also presented.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5928
Author(s):  
Han Wang ◽  
Shilei Wu ◽  
Zhongxi Shao

Elliptical vibration-assisted cutting technology has been widely applied in complicated functional micro-structured surface texturing. Elliptical-arc-beam spherical flexure hinges have promising applications in the design of 3D elliptical vibration-assisted cutting mechanisms due to their high motion accuracy and large motion ranges. Analytical compliance matrix formulation of flexure hinges is the basis for achieving high-precision positioning performance of these mechanisms, but few studies focus on this topic. In this paper, analytical compliance equations of spatial elliptic-arc-beam spherical flexure hinges are derived, offering a convenient tool for analysis at early stages of mechanism design. The mechanical model of a generalized flexure hinge is firstly established based on Castigliano's Second Theorem. By introducing the eccentric angle as the integral variable, the compliance matrix of the elliptical-arc-beam spherical flexure hinge is formulated. Finite element analysis is carried out to verify the accuracy of the derived analytical compliance matrix. The compliance factors calculated by the analytical equations agree well with those solved in the finite element analysis for the maximum error; average relative error and relative standard deviation are 8.25%, 1.83% and 1.78%, respectively. This work lays the foundations for the design and modeling of 3D elliptical vibration-assisted cutting mechanisms based on elliptical-arc-beam spherical flexure hinges.


Mechanika ◽  
2019 ◽  
Vol 25 (6) ◽  
pp. 501-510
Author(s):  
JingJing Liang ◽  
Rui Qin Li ◽  
Shao Ping Bai ◽  
Qing Li ◽  
Shu Hua Kang

This paper establishes four models of U-shaped flexure hinges with different notch shapes and structure parameters, and presents the close-form compliance equations for the four structure types of U-shaped flexure hinges. The compliance of the flexure hinges is developed based on the Castiglione’s second theorem and calculus theory. A relationship between compliances and structure parameters is deduced using the models. The influences of the notch structure parameters on the compliance of the flexure hinges are investigated. Moreover, fatigue life of U-shaped flexure hinges is studied by finite element analysis, the results show that the fatigue life of flexure hinge increases gradually with the increasing of flexure hinge center thickness t and hinge notch width m.  With the increasing of the major axis of the ellipse a and semi minor axis of the ellipse b, the fatigue life of flexure hinge fluctuates locally, the general trend is a gradual decrease. The stress and fatigue life of U-shaped flexure hinges and arc flexure hinge are compared. The results show that the reliability of U-shaped flexure hinge is higher than that of circular arc flexure hinge.


1994 ◽  
Vol 116 (3) ◽  
pp. 770-776 ◽  
Author(s):  
I. Her ◽  
J. C. Chang

In this paper we present an analytical scheme for the displacement analysis of micropositioning stages with flexure hinges. The proposed scheme is based on linearization of the geometric constraint equations of the stage structure. A design chart for evaluating the stiffness of the flexure hinge is also presented in this paper. This chart provides more accurate estimations than the design formula presently in use. The proposed linear scheme is general, easy to use, yet capable of obtaining results close to those obtained from the finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document