Drill string torsional vibrations modeling with dynamic drill pipe properties measurement and field validation.

2021 ◽  
pp. 1-8
Author(s):  
Farouk Said Boukredera ◽  
Hadjadj Ahmed ◽  
Riad Mohamed Youcefi

Abstract This paper aims to present the drill string torsional dynamics through a lumped parameter modeling using the basic physical notions with continuous measurement of drill pipe mechanical properties (Inertia, damping, and stiffness). The model represents the mechanical properties as a variable for each drilled stand. A rock bit interactions model is employed in the system considering the kinetic friction as variable and depends on surface drilling parameters and the well length. Field data, including surface and downhole recorded velocities, are used to validate the model by comparing both velocities and to confirm the existence of drill string vibrations together with the simulation results (bit velocity).

2018 ◽  
Vol 148 ◽  
pp. 16005 ◽  
Author(s):  
Wei Lin ◽  
Yang Liu

Stick-slip oscillation in drill-string is a universal phenomenon in oil and gas drilling. It could lead to the wear of drill bit, even cause catastrophic failure of drill-strings and measurement equipment. Therefore, it is crucial to study drilling parameters and develop appropriate control method to suppress such oscillation. This paper studies a discrete model of the drill-string system taking into account torsional degree-of-freedom, drill-string damping, and highly nonlinear friction of rock-bit interaction. In order to suppress the stick-slip oscillation, a new proportional-derivative controller, which can maintain drill bit’s rotation at a constant speed, is developed. Numerical results are given to demonstrate its efficacy and robustness.


1984 ◽  
Vol 106 (2) ◽  
pp. 272-277 ◽  
Author(s):  
D. W. Dareing

Bottom-hole assemblies control the vibration response of drill strings because they are much heavier and stiffer than drill pipe. The length of bottom-hole assemblies is also a factor and the present practice of determining drill collar length often leads to natural tuning with drill bit displacement frequencies. As a result, bottom-hole assemblies are unintentionally designed to vibrate. This paper explains the causes of severe drill string vibrations and gives guidelines for controlling them.


2018 ◽  
Author(s):  
Christian F. Brown ◽  
Evgeny G. Podnos ◽  
Arild Saasen ◽  
Mitchell Dziekonski ◽  
Mostafa Al Furati

2021 ◽  
Author(s):  
Efe Mulumba Ovwigho ◽  
Saleh Al Marri ◽  
Abdulaziz Al Hajri

Abstract On a Deep Gas Project in the Middle East, it is required to drill 3500 ft of 8-3/8" deviated section and land the well across highly interbedded and abrasive sandstone formations with compressive strength of 15 - 35 kpsi. While drilling this section, the drill string was constantly stalling and as such could not optimize drilling parameters. Due to the resulting low ROP, it was necessary to optimize the Drill string in order to enhance performance. Performed dynamic BHA modelling which showed current drill string was not optimized for drilling long curved sections. Simulation showed high buckling levels across the 4" drill pipe and not all the weight applied on surface was transmitted to the bit. The drilling torque, flowrate and standpipe pressures were limited by the 4" drill pipe. This impacted the ROP and overall drilling performance. Proposed to replace the 4" drill pipe with 5-1/2" drill pipe. Ran the simulations and the model predicted improved drill string stability, better transmission of weights to the bit and increased ROP. One well was assigned for the implementation. Ran the optimized BHA solution, able to apply the maximum surface weight on bit recommended by the bit manufacturer, while drilling did not observe string stalling or erratic torque. There was also low levels of shocks and vibrations and stick-slip. Doubled the on-bottom ROP while drilling this section with the same bit. Unlike wells drilled with the previous BHA, on this run, observed high BHA stability while drilling, hole was in great shape while POOH to the shoe after drilling the section, there were no tight spots recorded while tripping and this resulted in the elimination of the planned wiper trip. Decision taken to perform open hole logging operation on cable and subsequently run 7-in liner without performing a reaming trip. This BHA has been adopted on the Project and subsequent wells drilled with this single string showed similar performance. This solution has led to average savings of approximately 120 hours per well drilled subsequently on this field. This consist of 80 hours due to improved ROP, 10 hrs due to the elimination of wiper trip and a further 30 hrs from optimized logging operation on cable. In addition, wells are now delivered earlier due to this innovative solution. This paper will show how simple changes in drill string design can lead to huge savings in this current climate where there is a constant push for reduction in well times, well costs and improved well delivery. It will explain the step-by-step process that was followed prior to implementing this innovative solution.


2021 ◽  
Vol 66 (05) ◽  
pp. 192-195
Author(s):  
Rövşən Azər oğlu İsmayılov ◽  

The aricle is about the pipe stick problems of deep well drilling. Pipe stick problem is one of the drilling problems. There are two types of pipe stick problems exist. One of them is differential pressure pipe sticking. Another one of them is mechanical pipe sticking. There are a lot of reasons for pipe stick problems. Indigators of differential pressure sticking are increase in torque and drug forces, inability to reciprocate drill string and uninterrupted drilling fluid circulation. Key words: pipe stick, mecanical pipe stick,difference of pressure, drill pipe, drilling mud, bottomhole pressure, formation pressure


2021 ◽  
Author(s):  
Dmitri Gorski ◽  
Martin Kvernland ◽  
Knut Hals ◽  
Margrethe Blaaflat ◽  
Johannes Ladenhauf ◽  
...  

Summary A novel method of utilizing simulations of surge and swab induced by floating rig heave is presented in this paper. The intended applications are in well planning and follow-up of drilling and completion operations. We focus on rig heave during drill pipe connections when the rig's heave compensator cannot be engaged. The method consists of: (1) estimating a dynamic, well- and operation-specific, rig heave limit based on surge & swab simulations at different depths in a well and (2) clearly communicating the dynamic rig heave limit to the rig crew and onshore organization as a simple metric. We present cases where this novel methodology has been tested during the drilling and completion of two offshore wells in Norway, and we elaborate on the operators’ view of the method's advantages. We conclude that complementing the traditional fixed rig-specific heave limit with the dynamic one that is based on the properties of the actual well and the actual drilling/completion parameters offers an opportunity to improve management of risks related to breaching well pressure margins or damaging downhole equipment and to reduce costs through reduction of weather-related non-productive time. We show that the dynamic rig heave limit may differ significantly from well to well and also throughout the same well depending on the kind of operation in the well, depth in the well, well geometry and other parameters related to well and operation properties. Our conclusion is that care should be taken when generalizing a maximum allowed rig heave value as is the industry practice today. The benefits of utilizing dynamic well-specific rig heave limit should be assessed during well planning for any well drilled and completed from a floating rig. Well planning software existing today does not offer this functionality.


2021 ◽  
Vol 261 ◽  
pp. 02021
Author(s):  
Xiaoyong Yang ◽  
Shichun Chen ◽  
Qiang Feng ◽  
Wenhua Zhang ◽  
Yue Wang

With the increasing intensity of oil and gas field exploration and development, oil and gas wells are also drilling into deeper and more complex formations. Conventional steel drilling tools can no longer meet the requirements of ultra-deep, high-temperature and high-pressure wells. The paper first analyzes the advantages of titanium alloy drill pipe based on basic performance of titanium alloy drill pipe. The experimental results show that the basic properties of titanium alloy drill pipes meet the operating standards of the petroleum industry. Then the buckling performance of titanium alloy drill pipe and steel drill pipe is compared, the calculation results show that the buckling performance of titanium alloy drill tools is slightly lower than that of steel drill tools. Secondly, the maximum allowable buildup rate of titanium alloy drill pipe and steel drill tool is studied. The research shows that under the same condition of the drill pipe outer diameter, titanium alloy drill pipe can be used for a smaller curvature radius and greater buildup rate. This advantage of titanium alloy drill pipe makes it more suitable for short radius and ultra-short radius wells. Finally, taking a shale gas horizontal well as an example, with the goal of reducing drill string friction and ensuring drill string stability, a comparative study on the application of titanium alloy drill pipe and steel drill pipe is carried out. The results show that titanium alloy drill pipe has a wider application in the field, and is suitable for operations under various complex working conditions.


2011 ◽  
Vol 314-316 ◽  
pp. 1210-1213
Author(s):  
Fang Po Li ◽  
Yong Gang Liu ◽  
Wang Yong

The failure cause of Φ127mm G105 IEU drill pipe upset was investigated through mechanical properties testing, optical morphologies and fracture surface analysis. The result show that drill pipe upset’s failure reason is the elephant hide and decarburization layer in its out-surface caused by improper upset treatment in forging process. Elephant hide and decarburization layer existing in drill pipe upset changed seriously reduced its strength and fatigue property. Under the effect of alternating stresses, the crack first initiated from the deepest position of elephant hide and developed quickly. In the end, it leaded the drill pipe to early piecing failure.


1969 ◽  
Vol 9 (04) ◽  
pp. 443-450 ◽  
Author(s):  
Paul F. Gnirk ◽  
J.B. Cheatham

Abstract The results of combined analytical and experimental studies involving simulated multiple bit-tooth penetration into rock are incorporated into a drilling rate equation for roller-cone bits assuming rather idealized downhole conditions. In particular, it is assumed That the rock behaves statically in a ductile fashion during bit-tooth penetration and that the rock chips are instantaneously removed from the bottom of the drill hole. The general analysis demonstrates an application of plasticity theory for the rock/bit-tooth interaction to The formulation of an upper limit on rotary drilling rate. Introduction Extensive experimentation involving single and indexed bit-tooth penetration into rock in a confining pressure environment has demonstrated that the pressure environment has demonstrated that the chip formation process is of a ductile, or pseudoplastic, nature at sufficiently low differential pseudoplastic, nature at sufficiently low differential pressures so as to be of interest in rotary drilling. pressures so as to be of interest in rotary drilling. Coincident with the experimentation, analytical consideration has been given to the theoretical problems of single and indexed bit-tooth penetration problems of single and indexed bit-tooth penetration into rock. In general, the analyses have assumed that the rock behaves statically in a rigid-plastic fashion and obeys the Mohr-Coulomb yield criterion. The quantitative comparison between experimental and calculated values of bit-tooth load required for chip formation has been remarkably good for a variety of rocks commonly encountered in drilling and at simulated differential pressures as low as 500 to 1,000 psi. Results obtained recently for indexed bit-tooth penetration indicate that the work (or energy) penetration indicate that the work (or energy) required to produce a unit volume of rock chip can be minimized by a proper combination of bit-tooth spacing and bit-tooth load for a given rock type and differential pressure. By utilizing this information, it is possible co formulate a drilling rate equation, at least in a preliminary fashion, for a roller-cone bit performing under rather idealized downhole conditions. In particular, through the use of characteristic dimensionless quantities pertinent to a roller-cone bit and to indexed bit-tooth penetration, interrelationships among bit weight, rotary speed, rotary power, bit diameter, rock strength and bit-tooth shape and spacing can be explicitly expressed. In the formulation of the equations, however, it is assumed that the rock chips are instantaneously removed from the bottom of the drill hole and that the rock behaves in a ductile manner during bit-tooth penetration. In addition, the effects of bit-tooth load application And penetration by a yawed tooth at an oblique angle are neglected. Although the analysis is presented in the light of some rather restrictive conditions, it does demonstrate a method of applying fundamental rock/bit-tooth interaction data, obtained by combining the results of analysis and experiment to the formulation of a drilling rate equation for rotary drilling. INDEXED BIT-TOOTH/ROCK INTERACTION PREVIOUS RESULTS PREVIOUS RESULTS The mechanics of bit-tooth/rock interaction under simulated conditions of borehole environment have been extensively described in a number of papers. In particular, the effects of differential papers. In particular, the effects of differential pressure, mechanical properties of rock, pore fluid, pressure, mechanical properties of rock, pore fluid, bit-tooth shape and spacing, rate of bit-tooth load application and dynamic filtration below the bit-tooth have been investigated experimentally. From a sequence of experiments, it was demonstrated that, for dry rock at atmospheric pore pressure, the mode of chip formation exhibits a transition, with increasing confining pressure, from predominantly brittle to predominantly ductile. SPEJ P. 443


2012 ◽  
Vol 577 ◽  
pp. 127-131 ◽  
Author(s):  
Peng Wang ◽  
Tie Yan ◽  
Xue Liang Bi ◽  
Shi Hui Sun

Fatigue damage in the rotating drill pipe in the horizontal well of mining engineering is usually resulted from cyclic bending stresses caused by the rotation of the pipe especially when it is passing through curved sections or horizontal sections. This paper studies fatigue life prediction method of rotating drill pipe which is considering initial crack in horizontal well of mining engineering. Forman fatigue life prediction model which considering stress ratio is used to predict drill string fatigue life and the corresponding software has been written. The program can be used to calculate the stress of down hole assembly, can predict stress and alternating load in the process of rotating-on bottom. Therefore, establishing buckling string fatigue life prediction model with cracks can be a good reference to both operation and monitor of the drill pipe for mining engineering.


Sign in / Sign up

Export Citation Format

Share Document