Experimental Results of Local Shear Stresses and Friction Torque in an Open Rotor-Stator Disc System

Author(s):  
Alexander Kuntze ◽  
Stefan Odenbach ◽  
Wieland Uffrecht

Abstract This contribution presents experimental investigations of friction torque in an open rotor-stator disc system by using two different measuring procedures. The first procedure based on a thermo electrical wall shear stress sensor. The sensor is investigated in two different substrates and different measuring parameters. A thermal model consisting of the supplied heating power, the thermal resistance toward the fluid, and into the substrate as well as the over temperature is used to achieve the heat transfer coefficient on the sensor surface. This heat transfer coefficient is attributed by a functional relationship to the wall shear stress. This relationship is firstly calibrated in a rectangular channel and subsequently validated at a fully turbulent flat plat flow. The second measuring procedure based on the tangential displacement of the stator disc due the friction torque. The disc is attached at a torsion spring. The friction torque is achieved by the torsion spring constant and the tangential displacement of the stator disc. Both measuring procedures are compared and agree well with each other. The used test rig has the possibility of reaching rotational Reynolds numbers representative for instance of a modern gas turbine. The investigations were carried out by a 0.5 m diameter rotor disc rotating up to 8500 rpm with a gap ratio between 0.008 and 0.04. The friction torque is measured on the stator disc and can be converted into moment coefficient. Moment coefficient on stator as well as measured pressure distributions are presented.

Author(s):  
Alexander Kuntze ◽  
Stefan Odenbach ◽  
Wieland Uffrecht

Abstract This contribution presents experimental investigations of friction torque in an open rotor-stator disc system by using two different measuring procedures. The first procedure based on a thermo electrical wall shear stress sensor. The sensor is investigated in two different substrates and different measuring parameters. A thermal model consisting of the supplied heating power, the thermal resistance toward the fluid, and into the substrate as well as the over temperature is used to achieve the heat transfer coefficient on the sensor surface. This heat transfer coefficient is attributed by a functional relationship to the wall shear stress. This relationship is firstly calibrated in a rectangular channel and subsequently validated at a fully turbulent flat plat flow. The second measuring procedure based on the tangential displacement of the stator disc due the friction torque. The disc is attached at a torsion spring. The friction torque is achieved by the torsion spring constant and the tangential displacement of the stator disc. Both measuring procedures are compared and agree well with each other. The used test rig has the possibility of reaching rotational Reynolds numbers representative for instance of a modern gas turbine. The investigations were carried out by a 0.5 m diameter rotor disc rotating up to 8500 rpm with a gap ratio between 0.008 and 0.04. The friction torque is measured on the stator disc and can be converted into moment coefficient. Moment coefficient on stator as well as measured pressure distributions are presented for different gap ratios and rotational Reynolds number.


Author(s):  
Basant Singh Sikarwar ◽  
K. Muralidhar ◽  
Sameer Khandekar

Clusters of liquid drops growing and moving on physically or chemically textured lyophobic surfaces are encountered in drop-wise mode of vapor condensation. As opposed to film-wise condensation, drops permit a large heat transfer coefficient and are hence attractive. However, the temporal sustainability of drop formation on a surface is a challenging task, primarily because the sliding drops eventually leach away the lyophobicity promoter layer. Assuming that there is no chemical reaction between the promoter and the condensing liquid, the wall shear stress (viscous resistance) is the prime parameter for controlling physical leaching. The dynamic shape of individual droplets, as they form and roll/slide on such surfaces, determines the effective shear interaction at the wall. Given a shear stress distribution of an individual droplet, the net effect of droplet ensemble can be determined using the time averaged population density during condensation. In this paper, we solve the Navier-Stokes and the energy equation in three-dimensions on an unstructured tetrahedral grid representing the computational domain corresponding to an isolated pendant droplet sliding on a lyophobic substrate. We correlate the droplet Reynolds number (Re = 10–500, based on droplet hydraulic diameter), contact angle and shape of droplet with wall shear stress and heat transfer coefficient. The simulations presented here are for Prandtl Number (Pr) = 5.8. We see that, both Poiseuille number (Po) and Nusselt number (Nu), increase with increasing the droplet Reynolds number. The maximum shear stress as well as heat transfer occurs at the droplet corners. For a given droplet volume, increasing contact angle decreases the transport coefficients.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
M. M. Heyhat ◽  
F. Kowsary

This paper aims to study the effect of particle migration on flow and heat transfer of nanofluids flowing through a circular pipe. To do this, a two-component model proposed by Buongiorno (2006, “Convective Transport in Nanofluids,” ASME J. Heat Transfer, 128, pp. 240–250) was used and a numerical study on laminar flow of alumina-water nanofluid through a constant wall temperature tube was performed. The effects of nonuniform distribution of particles on heat-transfer coefficient and wall shear stress are shown. Obtained results illustrate that by considering the particle migration, the heat-transfer coefficient increases while the wall shear stress decreases, compared with uniform volume fraction. Thus, it can be concluded that the enhancement of the convective heat transfer could not be solely attributed to the enhancement of the effective thermal conductivity, and beside other reasons, which may be listed as this higher enhancement, particle migration is proposed to be an important reason.


1995 ◽  
Vol 117 (2) ◽  
pp. 418-424 ◽  
Author(s):  
Q. Lu ◽  
N. V. Suryanarayana

Condensation of a vapor flow inside a horizontal rectangular duct, using the bottom plate as the only condensing surface, was experimentally investigated. The experimental measurements included condensate film thickness and heat transfer coefficients with R-113 and FC-72. The condensate film thickness, measured with an ultrasonic transducer, was used to obtain the local heat transfer coefficient. The heat transfer coefficient increased with increasing inlet vapor velocity. The rate of increase was enhanced noticeably after the appearance of interfacial waves. Within the limited range of the experimental variables, a correlation between St and RegL was developed by a linear regression analysis. However, because of the effect of the interfacial waves, instead of a single correlation for the entire range of RegL, two separate equations (one for the wave-free regime and another for the regime with waves) were found. Analytical predictions of heat transfer rates in the annular condensation regime require the proper modeling of the interfacial shear stress. A properly validated interfacial shear stress model with condensation is not yet available. The measurement of condensate film thickness at several axial locations opens the door for determining the local interfacial stress and, hence, a model for the interfacial shear stress.


2020 ◽  
Vol 14 ◽  

Computation fluid dynamics (CFD) modelling of laminar heat transfer behaviour of three types of nanofluids over flat plate are studied. In the modelling the two dimensional under laminar model is used. The base fluid is pure water and the volume fraction of nanoparticles in the base fluid is 0, 1, 2, 3, and 4%. The applied Reynolds number range considered is 997.1 ≤ Re ≤ 9971. For modelling of the physical properties of the nanofluid, single phase approach is used. The effect of the volume fraction and the type of nanoparticles on the physical properties has been evaluated and presented. Then, the analysis the flow behaviour of these three nanofluids is conducted by presenting the effect of increasing the nanoparticles concentration on the velocity profile, wall shear stress, skin friction coefficient, and average heat transfer coefficient. The results show that the type of nanoparticles is an important parameter for the heat transfer enhancement as each type has shown dissimilar behaviour in this study. Moreover, a polynomial correlation has been obtained to present the relation of the wall shear stress, skin friction coefficient and average heat transfer coefficient as a function of the volume fraction for the three nanofluids.


Author(s):  
Benjamin Heinschke ◽  
Wieland Uffrecht ◽  
Stefan Odenbach ◽  
Volker Caspary

This contribution presents the experimental results of telemetric heat transfer measurements on the rotor side of an open rotor-stator system air gap with various rotational speeds and rotor-stator distances. For the heat transfer measurements, the local over-temperature method is used, which is based on the analysis of the non-stationary temperature rise of small heated structures at the rotor surface. Additionally, experiments on a second test rig, a flat plate connected with an axial fan, are conducted for the streamwise calibration of the sensors. The measurement program is composed of eight rotational speeds n between 76 and 8,558 rpm at five gap distances s in the range from 1.5 mm to 25 mm at eight radial sensor positions r between 46 and 188 mm. Overall the test rig installation is equivalent to a rotational Reynolds number range Rer from 1,085 to 2,040,000. An evaluation and interpretation of the results shows that the characteristic correlation between the Reynolds number and the Nusselt number is similar to that used for the turbulent flow at a free rotating disc. The variation of the gap distance leads to a constant offset in the heat transfer coefficient, which becomes significantly higher with small distances.


Sign in / Sign up

Export Citation Format

Share Document