Characteristic Law of Borehole Deformation Induced by the Temperature Change in the Surrounding Rock of Deep Coalbed Methane Well

2021 ◽  
pp. 1-18
Author(s):  
Xin Li ◽  
Jie Zhang ◽  
Cuinan Li ◽  
Weilin Chen ◽  
Jingbin He ◽  
...  

Abstract The borehole stability of the coalbed methane (CBM) well has always been vital in deep CBM exploration and development. The borehole instability of the deep CBM well is due to many complicated reasons. The change in the surrounding rock temperature is an important and easily overlooked factor among many reasons. In this research, we used methods that include experiment and numerical simulation to study the characteristic law of the borehole deformation induced by the changes in the surrounding rock temperature of deep CBM well. The experimental results of the stress–strain curves of five sets of experiments show that when the experimental temperature rises from 40 °C to 100 °C, the average stress when coal samples are broken gradually decreases from 81.09 MPa to 72.71 MPa. The proportion of plastic deformation in the entire deformation stage gradually increases from 7.8% to 25.7%. Moreover, the characteristics that some key mechanical parameters of coal samples change with the experimental temperature are fitted, and results show that as the experimental temperature rises from 40 °C to 100 °C, the compressive strength, elastic modulus, and main crack length of coal samples show a gradually decreasing trend. By contrast, the Pois-son's ratio and primary fracture angle show a gradually increasing trend. Moreover, the relativity of the linear equations obtained by fitting is all close to 1, which can accurately reflect the corresponding change trend. Numerical simulation results show that a high temperature of the surrounding rock of the deep CBM well results in a high range of stress concentration on the coal seam borehole and high deformation.

2021 ◽  
Vol 11 (7) ◽  
pp. 2905-2915
Author(s):  
Xin Li ◽  
Jie Zhang ◽  
Cuinan Li ◽  
Ben Li ◽  
Haoyang Zhao ◽  
...  

AbstractIn the actual exploitation process of coalbed methane (CBM), as the fluid in the wellbore continues to circulate, the surrounding rock of the CBM well will continuously exchange heat with the fluid in the wellbore, resulting in continuous changes in the temperature of the surrounding rock itself. Linfen, Shanxi is the main exploitation area for CBM in China. This paper aims further to improve the exploitation efficiency of CBM in this area and conducts experimental research on the change characteristics of coal-rock mechanical properties under varying temperature conditions. The experimental results show that under constant pressure conditions, the higher the temperature, the lower the stress value when the coal-rock breaks. In the process of reaching peak strength, the higher the temperature, the higher the proportion of coal-rock plastic deformation in its entire deformation stage. The compressive strength, elastic modulus, and main crack length of coal-rock will decrease with temperature. The Poisson's ratio and primary fracture angle will increase with the increase of experimental temperature.


Author(s):  
Yansong Wang ◽  
Qunshan Quan ◽  
Yuguo Zhao ◽  
Zhongzhe Zhang ◽  
Xinghong Jiang

2021 ◽  
Vol 40 (1) ◽  
pp. 151-170
Author(s):  
Weijing Yao ◽  
Happiness Lyimo ◽  
Jianyong Pang

Abstract To study the active heat insulation roadways of high-temperature mines considering thermal insulation and injection, a high-temperature −965 m return air roadway of Zhujidong Coal Mine (Anhui Province, China) is selected as a prototype. The ANSYS numerical simulation method is used for the sensitivity analysis of heat insulation grouting layers with different thermal conductivities and zone ranges and heat insulation spray layers with different thermal conductivities and thicknesses; thus, their effects on the heat-adjusting zone radius, surrounding rock temperature field, and wall temperature are studied. The results show that the tunneling head temperature of the Zhujidong Mine is >27°C all year round, consequently causing serious heat damage. The heat insulation circle formed by thermal insulation spraying and grouting can effectively alleviate the disturbance of roadway airflow to the surrounding rock temperature field, thereby significantly reducing the heat-adjusting zone radius and wall temperature. The decrease in the thermal conductivities of the grouting and spray layers, expansion of the grouting layer zone, and increase in the spray layer thickness help effectively reduce the heat-adjusting zone radius and wall temperature. This trend decreases significantly with the ventilation time. A sensitivity analysis shows that the use of spraying and grouting materials of low thermal conductivity for thermal insulation is a primary factor in determining the temperature field distribution, while the range of the grouting layer zone and the spray layer thickness are secondary factors. The influence of the increased surrounding rock radial depth and ventilation time is negligible. Thus, the application of thermal insulation spraying and grouting is essential for the thermal environment control of mine roadways. Furthermore, the research and development of new spraying and grouting materials with good thermal insulation capabilities should be considered.


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


2015 ◽  
Vol 723 ◽  
pp. 271-278
Author(s):  
Yu Liang Zhou ◽  
Dong Feng Yuan ◽  
Jun Zheng ◽  
Hua Wang

To provide a theoretical basis for water prevention and control methods and reasonable supporting techniques for vertical shaft, and to ensure the shaft construction to pass the sandstone aquifer safely and rapidly, numerical simulation using dynamic damage constitutive model, which was a user-defined constitutive modules in FLAC3D, a lagrangian analysis code in three dimensions, has been applied to investigate the dynamic damage effect in the surrounding rock of the grouting curtain near the driving working face for vertical shaft excavated by blasting. The results indicate that the distribution of the damage zone in the surrounding rock of the shaft, which decreases the effective thickness of the grouting curtain, was like a ellip-se, and that the depth of the damage zone in the surrounding rock of the shaft grouting curtain is fewer than that of the driving face floor. It can be concluded that the centre part of the driving face floor, especially the cutting hole zones, and the shaft wall in the greater horizontal stress side are the " key parts " for shaft water prevention and control methods.


2014 ◽  
Vol 953-954 ◽  
pp. 1638-1642
Author(s):  
Ai Qing Liu ◽  
Jian Zhang ◽  
Peng Cheng ◽  
Yu Hai Zhang

Prestress is a key parameter in bolting, while the cohesive force of layers in the compound roof strata is low and prone to separation, causing the prestress proliferation very poor. With the method of numerical simulation analysis,the location of separation in compound roof to affect the performance of bolting support was researched. It is concluded the roof separation in the edge of anchorage zone, the prestress field superpose, but is away from the deep surrounding rock and shows poor stability,however the role of cable can make up for the defect of rockbolts support. It has been found the highly prestressed strength bolting system adapts to the compound roof.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2647
Author(s):  
Gang Wang ◽  
Cheng Fan ◽  
Hao Xu ◽  
Xuelin Liu ◽  
Rui Wang

Accurately determining the height of the gas-guiding fracture zone in the overlying strata of the goaf is the key to find the height of the long horizontal borehole in the roof. In order to determine the height, in this study we chose the 6306 working face of Tangkou Coal Mine in China as a research example and used both the theoretical model and discrete element method (DEM) numerical simulation to find the height of the gas-guiding fracture zone and applied the height to drill a long horizontal borehole in the roof of the 6303 working face. Furthermore, the borehole was utilized to deep into the roof for coalbed methane drainage and the results were compared with conventional gas drainage measures from other aspects. The height of the gas-guiding fracture zone was found to be 48.57 m in theoretical model based on the bulk coefficient and the void ratio and to be 51.19 m in the DEM numerical simulation according to the temporal and spatial variation characteristics of porosity. Taking both the results of theoretical analysis and numerical simulation into consideration, we determined that gas-guiding fracture zone is 49.88 m high and applied it to drill a long horizontal borehole deep into the roof in the 6303 working face field. Compared with conventional gas drainage measures, we found that the long horizontal borehole has the high stability, high efficiency and strong adaptability for methane drainage.


Sign in / Sign up

Export Citation Format

Share Document