Developing Uncertainty Quantification Strategies in Electromagnetic Problems Involving Highly Resonant Cavities

Author(s):  
Salvatore Campione ◽  
JohnA Stephens ◽  
Nevin Martin ◽  
Aubrey Eckert ◽  
Larry Warne ◽  
...  

Abstract High-quality factor resonant cavities are challenging structures to model in electromagnetics owing to their large sensitivity to minute parameter changes. Therefore, uncertainty quantification strategies are pivotal to understanding key parameters affecting the cavity response. We discuss here some of these strategies focusing on shielding effectiveness properties of a canonical slotted cylindrical cavity that will be used to develop credibility evidence in support of predictions made using computational simulations for this application.

2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Nir Dahan ◽  
Avi Niv ◽  
Gabriel Biener ◽  
Yuri Gorodetski ◽  
Vladimir Kleiner ◽  
...  

In high temperature and vacuum applications, when heat transfer is predominantly by radiation, the material’s surface texture is of substantial importance. Several micro- and nanostructure designs have been proposed to enhance a material’s emissivity and its radiative coherence, as control of thermal emission is of crucial concern in the design of infrared sources, optical filters, and sensing devices. In this research, an extraordinary coherent thermal emission from an anisotropic microstructure is experimentally and theoretically presented. The enhanced coherency is due to coherent coupling between resonant cavities obtained by surface standing waves, wherein each cavity supports a localized field that is attributed to coupled surface phonon polaritons. We show that it is possible to obtain a polarized quasimonochromatic thermal source from a SiC microstructure with a high quality factor of 600 at the resonant frequency of the cavity and a spatial coherence length of 716 wavelengths, which corresponds to an angular divergence of 1.4mrad. In the experimental results, we measured a quality factor of 200 and a spatial coherence length of 143 wavelengths. We attribute the deviation in the experimental results to imperfections in the fabrication of the high quality factor cavities.


2019 ◽  
Vol 40 (2) ◽  
pp. 135-138 ◽  
Author(s):  
Mahdi Zavvari

Abstract In this article, we proposed a four-channel optical demultiplexer based on photonic crystal resonant cavities. For performing wavelength selection task, we used four resonant cavities with different lengths in order to choose four channels with different wavelengths. The average channel spacing of the structure is about 1 nm and the minimum transmission efficiency is 90 %. The bandwidths of the channels are the same and equal to 0.8 nm.


2014 ◽  
Vol 134 (2) ◽  
pp. 26-31 ◽  
Author(s):  
Nguyen Van Toan ◽  
Masaya Toda ◽  
Yusuke Kawai ◽  
Takahito Ono

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Andreas Ø. Svela ◽  
Jonathan M. Silver ◽  
Leonardo Del Bino ◽  
Shuangyou Zhang ◽  
Michael T. M. Woodley ◽  
...  

AbstractAs light propagates along a waveguide, a fraction of the field can be reflected by Rayleigh scatterers. In high-quality-factor whispering-gallery-mode microresonators, this intrinsic backscattering is primarily caused by either surface or bulk material imperfections. For several types of microresonator-based experiments and applications, minimal backscattering in the cavity is of critical importance, and thus, the ability to suppress backscattering is essential. We demonstrate that the introduction of an additional scatterer into the near field of a high-quality-factor microresonator can coherently suppress the amount of backscattering in the microresonator by more than 30 dB. The method relies on controlling the scatterer position such that the intrinsic and scatterer-induced backpropagating fields destructively interfere. This technique is useful in microresonator applications where backscattering is currently limiting the performance of devices, such as ring-laser gyroscopes and dual frequency combs, which both suffer from injection locking. Moreover, these findings are of interest for integrated photonic circuits in which back reflections could negatively impact the stability of laser sources or other components.


2020 ◽  
Vol 127 (19) ◽  
pp. 193103
Author(s):  
Deepak Kumar ◽  
Surya Pranav Ambatipudi ◽  
Sabyasachi Banerjee ◽  
Ranjan Kumar ◽  
Dibakar Roy Chowdhury

2014 ◽  
Vol 22 (3) ◽  
pp. 3724 ◽  
Author(s):  
Jeongwon Lee ◽  
Bo Zhen ◽  
Song-Liang Chua ◽  
Ofer Shapira ◽  
Marin Soljačić

Sign in / Sign up

Export Citation Format

Share Document