Research on heat transfer characteristics and typical parameters sensitivity analysis of the deep borehole heat exchanger combined with the geothermal wells

Author(s):  
Jiuchen Ma ◽  
Qiuli Zhang ◽  
Feiyu Yi ◽  
Qian Jiang ◽  
Yacheng Xie ◽  
...  

Abstract Based on abundant hydrothermal geothermal resources at the depth of 1000-2000m formation in the basin of the BoHai Bay, the deep borehole heat exchanger (DBHE) combined with the geothermal wells is proposed. According to the modified thermal resistance and capacity model (MTRCM), the heat transfer models inside and outside borehole are established. The transient analytical solutions are obtained by applying Laplace transform method to calculate the vertical temperature profiles in the inlet (outlet) pipe and the grout of the DBHE. The mathematical model and the analytical solutions are validated by the experimental data and existing studied data. This paper utilizes respectively the Matlab2012 and the Feflow7.1 to solve the heat transfer models inside and outside the DBHE. The sensitivity analysis is performed to examine the influence of typical parameters on the DBHE heat transfer characteristics. Under the well distance of 50m, the DBHE heat transfer capacity increases by 29.5% and 42.5% when the quantity of geothermal water exploitation increases from 0m3/h to 75m3/h and 150m3/h respectively. The results show that the heat transfer mechanism is changed in the thermal reservoir, and the heat transfer progress of the DBHE is intensified through orderly regulating the quantity of geothermal water exploitation and the well distance. However, with the change of the quantity of geothermal water exploitation, the growth rate of the DBHE heat transfer capacity reduces and the sensitivity of the change of the typical parameters on the DBHE heat transfer performance reduces.

2020 ◽  
Author(s):  
Hannah Rose Doran ◽  
Theo Renaud ◽  
Gioia Falcone ◽  
Lehua Pan ◽  
Patrick Verdin

Abstract Geothermal energy is a baseload resource that has the potential to contribute significantly to the transition to a low-carbon future. Alternative (unconventional) deep geothermal designs are thus needed to provide a secure and efficient energy supply. Current Enhanced Geothermal Systems (EGS) are under technical review as a result of the associated low recovery factors and risk of induced seismicity in connection with reservoir stimulation operations, and Supercritical EGS (SEGS) concepts are still under early research and development. The Newberry and Icelandic Deep Drilling Projects (NDDP and IDDP) aid these developments to drill deeper into very hot temperature zones. An in-depth sensitivity analysis was investigated considering a deep borehole closed-loop heat exchanger (DBHE) to overcome the current limitations of deep EGS. Using the DBHE, cold working fluid is pumped down in the outer annulus and rises to the surface via natural convection or is pumped up via an inner tubing. A T2Well/EOS1 model previously calibrated on an experimental DBHE in Hawaii was adapted to the current NWG 55-29 well at the Newberry volcano site in Central Oregon. A sensitivity analysis was carried out, including parameters such as: the working fluid mass flow rate, the casing and cement thermal properties and the wellbore radii dimensions. The results allow an assessment of key thermodynamics within the wellbore and provide an insight into how heat is lost/gained throughout the system. This analysis was performed under the assumption of sub-critical conditions. Requirements for further software development are briefly discussed, which would facilitate the modelling of unconventional geothermal wells in supercritical systems.


2003 ◽  
Vol 2003.38 (0) ◽  
pp. 108-109
Author(s):  
Hiroyuki Ishihara ◽  
Takao Yokoyama ◽  
Hiroshi Watanabe ◽  
Hiroto Abiko ◽  
Mutsumi Tsuchiya

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hannah R. Doran ◽  
Theo Renaud ◽  
Gioia Falcone ◽  
Lehua Pan ◽  
Patrick G. Verdin

AbstractAlternative (unconventional) deep geothermal designs are needed to provide a secure and efficient geothermal energy supply. An in-depth sensitivity analysis was investigated considering a deep borehole closed-loop heat exchanger (DBHE) to overcome the current limitations of deep EGS. A T2Well/EOS1 model previously calibrated on an experimental DBHE in Hawaii was adapted to the current NWG 55-29 well at the Newberry volcano site in Central Oregon. A sensitivity analysis was carried out, including parameters such as the working fluid mass flow rate, the casing and cement thermal properties, and the wellbore radii dimensions. The results conclude the highest energy flow rate to be 1.5 MW, after an annulus radii increase and an imposed mass flow rate of 5 kg/s. At 3 kg/s, the DBHE yielded an energy flow rate a factor of 3.5 lower than the NWG 55-29 conventional design. Despite this loss, the sensitivity analysis allows an assessment of the key thermodynamics within the wellbore and provides a valuable insight into how heat is lost/gained throughout the system. This analysis was performed under the assumption of subcritical conditions, and could aid the development of unconventional designs within future EGS work like the Newberry Deep Drilling Project (NDDP). Requirements for further software development are briefly discussed, which would facilitate the modelling of unconventional geothermal wells in supercritical systems to support EGS projects that could extend to deeper depths.


2021 ◽  
Vol 169 ◽  
pp. 738-751
Author(s):  
Ji Li ◽  
Wei Xu ◽  
Jianfeng Li ◽  
Shuai Huang ◽  
Zhao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document