Influence of the ultrasonic vibration on system dynamic responses in the multi-ball surface burnishing process

Author(s):  
Ding Cong ◽  
Zhen-yu Zhou ◽  
Zhong-yu Piao ◽  
Zhanpeng Mao

Abstract With the urgent demand of high-end equipment for high quality surfaces, the technique of ultrasonic vibration-assisted burnishing is introduced to strengthen the surface properties. To explore the influence of the ultrasonic vibration on the dynamic response of a burnishing system, the burnishing friction force generated from a multi-ball surface burnishing system was characterized by chaos theory. The system had four assisted forms: no ultrasonic vibration, one-dimensional (1D) ultrasonic in x-axis, 1D ultrasonic in z-axis, and 2D ultrasonic in xz-axis. The results showed that any burnishing system had chaotic nature. Under the 2D ultrasonic vibration-assisted burnishing, the burnishing friction force was reconstructed to be a chaotic attractor with high convergence degree. Moreover, the burnishing system has notable complexity and stability. The burnished Al7075 alloy sample has an excellent surface with a higher smoothness and hardness. The burnishing with 2D ultrasonic vibration in xz-axis is a technique to enhance surface properties.

2016 ◽  
Vol 24 (9) ◽  
pp. 1632-1651 ◽  
Author(s):  
Shihua Zhou ◽  
Guiqiu Song ◽  
Mengnan Sun ◽  
Zhaohui Ren

A coupled lateral-torsional nonlinear dynamic model with 16-degree-of-freedom (16-DOF) of gear-rotor-bearing transmission system (GRBTS) is developed after comprehensive considering the nonlinear features associated with time-varying meshing stiffness, backlash, transmission error, friction force, input/output load, gravity and gear eccentricity. Based on the nonlinear differential equations, the coupled multi-body dynamic responses of the GRBTS are demonstrated using the Runge-Kutta numerical method, and the effects of friction coefficient and mean load on the dynamic characteristics are investigated. The results show that the friction force could enlarge the vibration amplitude and affect the low frequency components seriously. The mean load excitation has a complicated influence on the coupled GRBTS, and the torsional vibration is the dominate response. Whereas the mean load excitation has a certain extent vibration suppression, and light load and heavy load could no longer effectively control the nonlinear vibration of the GRBTS. With the increasing of rotational speed, the friction coefficient and mean load ranges of the chaotic behavior widen and the chaotic characteristics strengthens. It is shown that small parameter random perturbation might be propagated in the vibration system and lead to relatively large vibration of the system. The contribution to provide a reference for the design and study of gear system.


2021 ◽  
Vol 0 ◽  
pp. 1-7
Author(s):  
Hikmetnur Danisman ◽  
Fatih Celebi ◽  
Sengul Danisman ◽  
Ali Altug Bicakci

Objectives: The aim of this study is to apply a diamond-like carbon (DLC) coating on orthodontic brackets and to examine the effects of the coating on surface properties and friction. Materials and Methods: 0.022-inch upper right canine brackets, 0.018-inch stainless steel wires, and 0.019 × 0.025-inch stainless steel wires were used in the study. Half of the brackets were treated with physical vapor deposition technique and coated with DLC. Different binary groups constituted of coated and uncoated brackets and wires were subjected to friction experiments using the Instron universal testing machine (Instron, Norwood, MA, USA). The surface properties of the coatings were evaluated using Raman, Scanning Electron Microscopy, and non-contact optical profilometer. Results: The friction force values between the DLC-coated brackets and the stainless-steel wires in both dimensions were found to be statistically significantly lower than the friction force between the uncoated brackets and the wires (P < 0.001). The surface roughness value, especially around the slot groove decreased significantly in the coated brackets (P < 0.05). DLC coating layer thickness is approximately 1.0 μm (806 nanometers). Conclusion: DLC coating improves the surface properties of orthodontic brackets, and DLC coating process remarkably reduced the friction force.


Author(s):  
Ismael Fernández-Osete ◽  
Aida Estevez-Urra ◽  
Eric Velázquez-Corral ◽  
David Valentin ◽  
Jordi Llumà ◽  
...  

In this paper, a resonant system that produces a movement of low amplitude and ultrasonic frequency is used to achieve the vibration assistance in a ball-burnishing process. A full vibration characterization of this process performed in a lathe was done. It is carried out by a new tool designed in the research group of the authors. Its purpose is to demonstrate that the machine and the tool do not have any resonance problem during the process and to prevent possible failures. The analysis of this dynamic behaviour permits to validate the suitability of the tool when it is anchored to a numerical control lathe. This is very important for its future industrial implementation. It is also intended to confirm that the system adequately transmits vibrations through the material. To do this, a methodology to validate the dynamic tool behaviour was developed. Several techniques that combine the usual and ultrasonic vibration ranges through static and dynamic measurements were merged: vibration and acoustic emission measurements. An operational deflection shape (ODS) exercise has been also performed. Results show the suitability of the tool used to transmit the assistance vibrations, and that no damage is produced in the material in any case.


2018 ◽  
Vol 13 (10) ◽  
pp. 1552-1556
Author(s):  
M. Imtiaz Hussain ◽  
Gwi Hyun Lee ◽  
Jun-Tae Kim

In this study, the transient behavior of a concentrated photovoltaic thermal (CPV/T) system is assessed using one-dimensional mathematical model. The model is based on the heat balance of the concentrated photovoltaic (CPV) solar cells, receiver pipe, thermal fluid, insulation, and the storage tank attached to PV/T system via insulated pipes. The mathematical model was developed and solved using ordinary differential equation solvers in MATLAB® computer program. The interdependence thermo-electric dynamic responses of the CPV/T system were modeled and analyzed by considering two cases such as with and without glass enclosure around the receiver. The electrical and thermal efficiencies are evaluated as the function of enclosure effect, beam solar radiation, and circulating fluid flow rate. For the purpose of model validation, experimental measurements of the CPV/T system were performed. Satisfactory agreements were found between the experimental data and the predicted results. The developed dynamic model is most suitable to predict and evaluate the performance of a point-focused CPV/T system.


1988 ◽  
Vol 110 (4) ◽  
pp. 355-360 ◽  
Author(s):  
Y. Sano

A theoretical attempt to clarify the reason why the compacts of powder media have uniform density distributions as the density of the compacts becomes high, is made for the compaction of the copper powder medium of a simple type by punch impaction. Based on the one-dimensional equation of motion including the effect of die wall friction force, there are two main factors which influence the density distribution of the medium during the compaction process; one is the propagation of the shock wave passing through the medium, while the other is the friction force between the circumferential surface of the medium and the die wall. The equation reveals that the effect of the force increases little as the density becomes high as a result of the repetitive traveling of the shock wave between the punch and plug. The propagation or more definitely the repetitive traveling, on the other hand, increasingly unformalizes the density distribution during the process as the number of the traveling increases. Owing to the aforementioned effects of the two factors on the density distribution during the process, the high density compacts become uniform.


2015 ◽  
Vol 649 ◽  
pp. 54-59
Author(s):  
Takaaki Ishii ◽  
Hiroki Yamawaki ◽  
Hidetoshi Ohuchi

An ultrasonic motor using thrust ball bearing with dimple structure on the friction surface has been proposed. The bearing balls are rotated by the friction force caused by the ultrasonic vibration of the stator, and transfer torque to the rotor. The dimple structure on the sliding surface can hold the ball position and rotate the balls and the rotor without a retainer. The newly proposed motor can avoid the friction loss between balls and the retainer. The balls of 2.4 mm in radius are used and the radii of the curvature of the dimples of 2.0 mm and 3.0 mm are used in this research. The radius difference changes the contact condition between the balls and the dimple structure. Fundamental motor characteristics are measured and discussed.


2009 ◽  
Vol 19 ◽  
pp. 35-43 ◽  
Author(s):  
Rob Hordijk

This article addresses the design of the Blippoo Box, an audio sound generator that operates according to the principles of chaos theory. By designing the Blippoo Box, the artist attempts to bridge a crossover space between abstract (sonic) art, music and artistic craftsmanship. In the hands of performing musicians the Blippoo Box becomes an electronic music instrument that invites performers to improvise with the chaotic nature of the box. Despite this chaotic behavior, the produced sounds have particular characteristics that are roughly predictable and enable a performer to build a performance around a composed scheme.


Sign in / Sign up

Export Citation Format

Share Document