scholarly journals Effects of diamond-like carbon coating on frictional and mechanical properties of orthodontic brackets: An in vitro study

2021 ◽  
Vol 0 ◽  
pp. 1-7
Author(s):  
Hikmetnur Danisman ◽  
Fatih Celebi ◽  
Sengul Danisman ◽  
Ali Altug Bicakci

Objectives: The aim of this study is to apply a diamond-like carbon (DLC) coating on orthodontic brackets and to examine the effects of the coating on surface properties and friction. Materials and Methods: 0.022-inch upper right canine brackets, 0.018-inch stainless steel wires, and 0.019 × 0.025-inch stainless steel wires were used in the study. Half of the brackets were treated with physical vapor deposition technique and coated with DLC. Different binary groups constituted of coated and uncoated brackets and wires were subjected to friction experiments using the Instron universal testing machine (Instron, Norwood, MA, USA). The surface properties of the coatings were evaluated using Raman, Scanning Electron Microscopy, and non-contact optical profilometer. Results: The friction force values between the DLC-coated brackets and the stainless-steel wires in both dimensions were found to be statistically significantly lower than the friction force between the uncoated brackets and the wires (P < 0.001). The surface roughness value, especially around the slot groove decreased significantly in the coated brackets (P < 0.05). DLC coating layer thickness is approximately 1.0 μm (806 nanometers). Conclusion: DLC coating improves the surface properties of orthodontic brackets, and DLC coating process remarkably reduced the friction force.

2000 ◽  
Vol 14 (07n08) ◽  
pp. 259-266 ◽  
Author(s):  
M. CHEN ◽  
J. GAO

Diamond-like carbon (DLC) has been a candidate prosthetic coating due to its excellent physical and chemical properties, and biocompatibility. However, the adhesion to a number of prosthetic materials is still an issue. Different techniques have been used to improve the adhesion of DLC on various substrates. In this paper, we report the fabrication of an adherent DLC coating on commercial 316 stainless steel by using pulsed laser deposition and a composition-graded intermediate layer. Intermediate layers with graded composition from stainless steel to DLC were obtained by designing an inlaid target. Raman spectrum analysis indicated that the grown DLC films are rich in sp3 bonds. The adhesion of the coatings as well as other properties of the intermediate layers are also discussed.


2007 ◽  
Vol 515 (6) ◽  
pp. 3196-3201 ◽  
Author(s):  
Z.-H. Xie ◽  
R. Singh ◽  
A. Bendavid ◽  
P.J. Martin ◽  
P.R. Munroe ◽  
...  

2016 ◽  
Vol 86 (5) ◽  
pp. 782-788 ◽  
Author(s):  
Hao Zhang ◽  
Shuyu Guo ◽  
Dongyue Wang ◽  
Tingting Zhou ◽  
Lin Wang ◽  
...  

ABSTRACT Objective:  To evaluate and compare the effects of nanostructured, diamondlike, carbon (DLC) coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel archwires. Materials and Methods:  Plasma-enhanced chemical vapor deposition technology was applied to coat DLC films onto the surface of austenitic stainless steel wires, and salt-bath nitrocarburizing technology was employed to achieve surface hardening of other wires. Surface and cross-sectional characteristics, microhardness, modulus of elasticity, friction resistance, corrosion resistance, and cell toxicity of the modified and control wires were analyzed. Results:  The surfaces of the DLC-coated and nitrocarburized wires were both smooth and even. Compared with the control, the DLC-coated wires were increased in surface hardness 1.46 times, decreased in elastic modulus, reduced in kinetic friction coefficient by 40.71%, and decreased in corrosion current density by two orders of magnitude. The nitrocarburized wire was increased in surface hardness 2.39 times, exhibited an unchanged elastic modulus, demonstrated a decrease in maximum static friction force of 22.2%, and rose in corrosion current density two orders of magnitude. Cytotoxicity tests revealed no significant toxicity associated with the modified wires. Conclusions:  DLC coating and nitrocarburizing significantly improved the surface hardness of the wires, reduced friction, and exhibited good biocompatibility. The nanostructured DLC coating provided excellent corrosion resistance and good elasticity, and while the nitrocarburizing technique substantially improved frictional properties, it reduced the corrosion resistance of the stainless steel wires to a lesser extent.


2013 ◽  
Vol 18 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Roberta Ferreira Pimentel ◽  
Roberto Sotto Maior Fortes de Oliveira ◽  
Maria das Graças Afonso Miranda Chaves ◽  
Carlos Nelson Elias ◽  
Marco Abdo Gravina

OBJECTIVE: To evaluate and compare "in vitro" the maximum friction force generated by three types of esthetic brackets, two types of polycrystalline conventional ceramic brackets (20/40 and InVu) and one type of sapphire monocrystalline bracket (Radiance) in dry and artificial saliva wet settings. Also, to evaluate the influence exerted by artificial saliva on the friction forces of those brackets. METHODS: Tests were performed in dry and artificial saliva wet setting (Oral Balance) by using an EMIC DL 10000 testing machine, simulating a 2 mm slide of 0.019 x 0.025-in rectangular stainless steel wires over the pre-angulated and pre-torqued (right superior canine, Roth prescription, slot 0.022 x 0.030-in) brackets (n = 18 for each bracket). In order to compare groups in dry and wet settings, the ANOVA was used. For comparisons related to the dry versus wet setting, the student t test was used for each group. RESULTS: The results showed that in the absence of saliva the Radiance monocrystalline brackets showed the highest friction coefficients, followed by the 20/40 and the InVu polycrystalline brackets. In tests with artificial saliva, the Radiance and the 20/40 brackets had statistically similar friction coefficients and both were greater than that presented by the InVu brackets. The artificial saliva did not change the maximum friction force of the Radiance brackets, but, for the others (20/40 and InVu), an increase of friction was observed in its presence. CONCLUSION: The InVu brackets showed, in the absence and in the presence of saliva, the lowest friction coefficient.


2015 ◽  
Vol 34 (6) ◽  
pp. 888-895 ◽  
Author(s):  
Shun AKAIKE ◽  
Tohru HAYAKAWA ◽  
Daishiro KOBAYASHI ◽  
Yuko AONO ◽  
Atsushi HIRATA ◽  
...  

2010 ◽  
Vol 438 ◽  
pp. 211-218 ◽  
Author(s):  
Wolfgang Tillmann ◽  
Evelina Vogli ◽  
Fabian Hoffmann ◽  
Patrick Kemdem

Since diamond like carbon layers feature excellent mechanical and tribological behavior under defined environmental circumstances, they are well established in a wide field of industrial and automotive applications in the last decade. However, the pretreatment of the substrate plays also an important role in supporting and enforcing the excellent properties of the coatings. This work analyses the effect of the plasma nitrided cold working steel substrate (80CrV2) on the adhesion, friction and wear resistance of DLC-coatings and compares it to the performance of DLC-coatings applied on a non-hardened substrate material. Therefore the grinded and polished specimens were nitrogen-hardened in an Arc-PVD (Physical Vapor Deposition)-device before the DLC-coating was applied in a Magnetron Sputter-PVD-process. In order to measure the hardness of the thin film coating, a nanoindenter was used. The adhesion was tested with a scratch tester and the wear resistance was measured by using a Ball-on-disc-tester. A 3D-profilometer and a SEM (Scanning Electron Microscope) were utilized to analyze the scratches and wear tracks on the samples. With these results correlations between the substrate nitriding and the mechanical and tribological performance of the DLC-coating were made.


2011 ◽  
Vol 12 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Avinash Kumar ◽  
Nadeem Husain

ABSTRACT Aim The purpose of this investigation was to determine the kinetic frictional resistance offered by stainless steel and Titanium bracket used in combination with rectangular stainless steel wire during in vitro translatory displacement of brackets. Materials and methods In this study. Brackets: (All brackets used had a torque of – 7° and an angulation of 0°): (1) Dynalock (Unitek) 0.018” slot, 3.3 mm bracket width, (2) Mini Uni-Twin (Unitek) 0.018” slot, 1.6 mm bracket width, (3) Ultra-Minitrim (Dentaurum) 0.022” slot 3.3 mm bracket width, (4) Titanium (Dentaurum) 0.022” slot, 3.3 mm bracket width. WIRES: (1) 0.016 × 0.022” stainless steel (Dentaurum), (2) 0.017 × 0.025’'stainless steel (Unitek), (3) 0.018 × 0.025” stainless steel (Dentaurum), elastomeric modules (Ortho Organisers), 0. 009” stainless steel ligature wires, hooks made of 0.021 × 0.025” stainless steel wires, super glue to bond the hooks to the base of the bracket, acetone to condition the bracket and wires before testing and artificial saliva. Brackets were moved along the wire by means of an Instron universal testing machine (1101) and forces were measured by a load cell. All values were recorded in Newtons and then converted into gms (1N-102 gm). 200 gm was then subtracted from these values to find out the frictional force for each archwire/bracket combination. For each archwire/ bracket combination three readings were taken under wet and dry condition and also with stainless steel ligature and elastomeric modules separately. Results The results showed that narrow brackets generated more friction than wider brackets. Frictional force was directly proportional to wire dimension. Titanium brackets generated more friction than stainless steel brackets. Archwire and bracket ligated with elastomeric module generated more friction than when ligated with stainless steel ligature wire. Frictional forces in the wet condition were greater than in the dry condition for all archwire to bracket combinations. Conclusion Frictional force was seen to be inversely proportional to bracket width, frictional force was inversely proportional to bracket width, and in the wet condition were greater than in the dry condition for all archwire to bracket combinations. Clinical significance This study of friction is its role in lessening the force actually received by a tooth from an active component such as a spring, loop or elastic. Hence greater applied force is needed to move a tooth with a bracket archwire combination demonstrating high magnitudes of friction compared with one with a low frictional value. How to cite this article Husain N, Kumar A. Frictional Resistance between Orthodontic Brackets and Archwire: An in vitro Study. J Contemp Dent Pract 2011;12(2):91-99.


Sign in / Sign up

Export Citation Format

Share Document