Experimental Analysis and Modelling of a Novel Thermosyphon System for Electronics Cooling

Author(s):  
Filippo Cataldo ◽  
Yuri Carmelo Crea

Abstract In an era of ever-growing digitalisation, the absorbed power of processing units is becoming an actual challenge for cooling systems. The effectiveness is imperative, but compactness and passiveness are driving factors in the design as well. The goal of the present paper is twofold: 1) to present a detailed experimental campaign on a thermosyphon system for high-heat-load electronics; 2) to propose a model of the thermosyphon system using a Machine Learning approach. The thermosyphon system is composed of a micro-channel evaporator plate directly attached to the heat-generating device and an air-cooled multiport condenser. The height between the evaporator and condenser inlets is 12 cm. The condenser is also proposed in two solutions: the first one has a footprint heat exchange area of 180 x 120 mm2, which allows a single fan's placement; the second one has a footprint area of 240x120 mm2, allowing the placement of two fans. The working fluid used in the system is R1234ze(E) with different charges. The experimental results show that the single-fan condenser reached a maximum heat rejection of 330 W, corresponding to a heat flux of 21.9 W/cm2. The double-fan condenser bore a maximum heat rejection of 570 W (37.7 W/cm2). The model, constructed purely via a Machine Learning tool, shows a very satisfactory agreement between experimental and predicted data.

Author(s):  
Hiroyasu Ohtake ◽  
Yasuo Koizumi ◽  
Ken Nemoto ◽  
Hisashi Sakurai

Spot cooling of local-high heat load by high-velocity thin liquid flow was examined experimentally. Steady state experiments were conducted using a copper thin-film and rectangular sub-millimeter-channels. The width of the test channel was 2 mm. The heights of the test channel were 0.5 and 0.2 mm. The width and length of a test heater was 2 mm and 2 mm, respectively. The test liquid was degassed pure water. The liquid velocities were 1.5, 5, 10 and 15 m/s. The liquid subcooling was 20 K. Location of the heater in the test channel also was an experimental parameter: the positions of the heater from the exit of the test channel were 30 mm (middle) and 0 mm (exit). Experimental results showed that the maximum heat flux (CHF or cooling limit) during experiment with the heater at exit of the test channel was similar to that with the heater at middle of the test channel: the maximum heat flux was independent of the position of heater in the test channel. The maximum heat flux occurred when bubbles coalesced together or a dry patch appeared on the heater. The coalescence bubble covered over the heater was observed at CHF in condition of low liquid velocity. For condition of high liquid velocity, a dry patch appeared on the heater, and then the dry region extended over the heater to come around the CHF. The maximum heat flux (critical heat flux) was about 8 MW/m2 in a range of present experiments. The CHF for the present sub-millimeter channel was similar to that for conventional channel. Furthermore, models were proposed using heat transfer around a coalesced bubble and at a dry patch on a heater.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Philipp Brumund ◽  
Juan Reyes-Herrera ◽  
Christian Morawe ◽  
Thomas Dufrane ◽  
Helena Isern ◽  
...  

Finite-element analysis is used to study the thermal deformation of a multilayer mirror due to the heat load from the undulator beam at a low-emittance synchrotron source, specifically the ESRF-EBS upgrade beamline EBSL-2. The energy bandwidth of the double-multilayer monochromator is larger than that of the relevant undulator harmonic, such that a considerable portion of the heat load is reflected. Consequently, the absorbed power is non-uniformly distributed on the surface. The geometry of the multilayer substrate is optimized to minimize thermally induced slope errors. We distinguish between thermal bending with constant curvature that leads to astigmatic focusing or defocusing and residual slope errors. For the EBSL-2 system with grazing angles θ between 0.2 and 0.4°, meridional and sagittal focal lengths down to 100 m and 2000 m, respectively, are found. Whereas the thermal bending can be tuned by varying the depth of the `smart cut', it is found that the geometry has little effect on the residual slope errors. In both planes they are 0.1–0.25 µrad. In the sagittal direction, however, the effect on the beam is drastically reduced by the `foregiveness factor', sin(θ). Optimization without considering the reflected heat load yields an incorrect depth of the `smart cut'. The resulting meridional curvature in turn leads to parasitic focal lengths of the order of 100 m.


Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Two-phase cooling is considered an attractive option for electronics cooling due to its ability to dissipate large quantities of heat. In recent years, pool boiling has shown tremendous ability in high heat dissipation applications. Researchers have used various fluid medium for pool boiling including water, alcohol, refrigerants, nanofluids and binary mixture. In the current work, binary mixture of water with ethanol was chosen as the working fluid. Plain copper chip was used as the boiling surface. Effect of various concentrations of binary mixture was investigated. A maximum heat flux of 1720 kW/m2 at a wall superheat of 28°C was recorded for 15% ethanol in water. It showed a 1.5 fold increase in CHF over pure water.


2021 ◽  
Author(s):  
Filippo Cataldo ◽  
Raffaele L. Amalfi ◽  
Jackson B. Marcinichen ◽  
John R. Thome

Abstract The trade-off between efficient cooling and low power consumption is a goal that has always been very desirable in electronics cooling, especially nowadays that power densities of processing units are increasing. Conventional cooling solutions do not have the necessary cooling capacities for these power densities or require significant power consumption. In this study, a novel air-cooled thermosyphon cooling system for desktop computers is presented and experimentally tested. The thermosyphon comprises a vertical micro-channel cold plate as the evaporator and a horizontal air-cooled multiport coil as the condenser. The thermosyphon has a total height of 12 cm and operates with a fan speed of 1700 RPM. The working fluid selected for the thermosyphon loop is R1234ze(E), chosen for its advantageous thermophysical properties and nearly zero-GWP (Global Warming Potential). The test results presented in this paper aim to analyze thermosyphon’s thermal and hydraulic performance by studying the trends of thermal resistance and mass flow rate as a function of different operating conditions. The maximum heat rejection under safe conditions is 250 W, corresponding to a heat flux of about 18 W/cm2.


2014 ◽  
Vol 960-961 ◽  
pp. 389-393
Author(s):  
Ya Ping Zhang ◽  
J.G. Wang

A trend towards increasingly dense and compact architectures has led to unmanageably high heat fluxes in electronic components. A novel heat pipe will be developed. Heat pipe designed is based on the flat plate heat pipe and pulsation heat pipe effective combination. Channel quantity is greatly increased ,as well as compact and homogeneous red copper pulsation plank is severed as the wick,dense and connected channels are served as the passage of the working fluid.


2008 ◽  
Vol 130 (7) ◽  
Author(s):  
Yiding Cao ◽  
Mingcong Gao

This paper conducts experimental and analytical studies of a novel heat-transfer device, reciprocating-mechanism driven heat loop (RMDHL) that facilitates two-phase heat transfer while eliminating the so-called cavitation problem commonly encountered by a conventional pump. A RMDHL normally includes a hollow loop having an interior flow passage, an amount of working fluid filled within the loop, and a reciprocating driver. The hollow loop has an evaporator section, a condenser section, and a liquid reservoir. The reciprocating driver is integrated with the liquid reservoir and facilitates a reciprocating flow of the working fluid within the loop, so that liquid is supplied from the condenser section to the evaporator section under a substantially saturated condition and the so-called cavitation problem associated with a conventional pump is avoided. The reciprocating driver could be a solenoid-operated reciprocating driver for electronics cooling applications and a bellows-type reciprocating driver for high-temperature applications. Experimental study has been undertaken for a solenoid-operated heat loop in connection with high heat flux thermal management applications. Experimental results show that the heat loop worked very effectively and a heat flux as high as 300W∕cm2 in the evaporator section could be handled. A working criterion has also been derived, which could provide a guidance for the design of a RMDHL.


Author(s):  
Farhad Saffaraval ◽  
Amir Jokar

The objective of this study is to experimentally explore thermodynamic performance of R245fa, as a low-pressure and environmentally-friendly refrigerant, in a microchannel heat exchanger. This heat exchanger is used in an electronics cooling application with high-power density. Due to the large amount of latent heat that is released during evaporation process, the two-phase microchannel coolers are able to remove much more energy compared to single-phase cooling systems. In this study, R245fa is used as the working fluid in a refrigeration pump loop that mainly includes an evaporator, a condenser, a refrigerant pump, and a pressure regulator valve. The goal is to obtain optimal mass flow rates and system pressures while the temperatures in evaporator and condenser are kept constant for specific conditions. The results obtained from this study are then compared to the results previously obtained for water as the working fluid in a similar cooling system. It is expected the evaporative cooling through the microchannel heat exchanger be a viable and effective solution, especially for higher heat flux applications.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

The growing trend in miniaturization of electronics has generated a need for efficient thermal management of these devices. Boiling has the ability to dissipate a high heat flux while maintaining a small temperature difference. A vapor chamber with pool boiling offers an effective way to provide cooling and to maintain temperature uniformity. The objective of the current work is to investigate pool boiling performance of ethanol on enhanced microchannel surfaces. Ethanol is an attractive working fluid due to its better heat transfer performance and higher heat of vaporization compared to refrigerants, and lower normal boiling point compared to water. The saturation temperature of ethanol can be further reduced to temperatures suitable for electronics cooling by lowering the pressure. Experiments were performed at four different absolute pressures, 101.3 kPa, 66.7 kPa, 33.3 kPa, and 16.7 kPa using different microchannel surface configurations. Heat dissipation in excess of 900 kW/m2 was obtained while maintaining the wall surface below 85 °C at 33 kPa. Flammability, toxicity, and temperature overshoot issues need to be addressed before practical implementation of ethanol-based cooling systems can occur.


Author(s):  
Guohui Zhou ◽  
Ji Li ◽  
Lucang Lv

In this paper, a miniature loop heat pipe (mLHP) with a flat evaporator is illustrated and investigated experimentally, with water as the working fluid. The mLHP can be applied for the mobile electronics cooling, such as tablet computers and laptop computers, with a 1.2 mm thick ultra-thin flat evaporator and a thickness of 1.0 mm for the vapor line, liquid line and condenser. A narrow sintered copper mesh in the liquid line and a part of the condenser as the secondary wick can promote the flow of the condensed working fluid back to the evaporator. The experimental results showed that the mLHP could start up successfully and operate stably at low heat load of 3 W in the horizontal orientation, and transport a high heat load of 12 W (the heat flux of 4 W/cm2) with the evaporator temperature below 100 °C in different test orientations by natural convection, showing good operational performance against gravity field. The minimum mLHP thermal resistance of 0.32 K/W was achieved at the input heat load of 12 W in the horizontal orientation.


Author(s):  
Travis S. Emery ◽  
Satish G. Kandlikar

As the need for efficient thermal management grows, pool boiling’s ability to dissipate high heat fluxes has gained significant interest. The objective of this work was to study the performance of pool boiling at atmospheric pressure using a dielectric fluid, HFE7000. Both plain and enhanced copper surfaces were tested, and these results were then compared to similar testing performed with water and FC-87. The enhanced surfaces utilized microchannels with porous coatings selectively located on different regions of the heat transfer surface. A maximum critical heat flux (CHF) of 41.7 W/cm2 was achieved here, which translated to a 29% CHF increase in comparison to a plain chip. A maximum heat transfer coefficient (HTC) of 104.0 kW/m2°C was also achieved, which translated to a 6-fold increase in HTC when compared to a plain copper chip. More notably, this HTC was achieved at a wall temperature of 38.4 °C. This HTC enhancement was greater than that of water and FC-87 when using the same enhanced surface. The effect of sintering location was found to have a similar effect on CHF with HFE7000 in comparison with water. The effect of microchannel size was shown to have similar effects on CHF when compared with FC-87 and water. From the results found here, it is concluded that the employment of selectively sintered open microchannels with HFE7000 has significant potential for enhanced heat dissipation in electronics cooling applications.


Sign in / Sign up

Export Citation Format

Share Document