In Vitro Simulation of Shoulder Motion Driven by 3D Scapular and Humeral Kinematics

Author(s):  
Hema Sulkar ◽  
Tyler Knighton ◽  
Linda Amoafo ◽  
Klevis Aliaj ◽  
Christopher Kolz ◽  
...  

Abstract In vitro simulation of 3D shoulder motion using in vivo kinematics obtained from human subjects allows investigation of clinical conditions in the context of physiologically relevant biomechanics. Herein we present a framework for laboratory simulation of subject-specific kinematics that combines individual 3D scapular and humeral control in cadavers. The objectives were to: 1) robotically simulate 7 healthy subject-specific 3D scapulothoracic and glenohumeral kinematic trajectories in 6 cadavers, 2) characterize system performance using kinematic orientation accuracy and repeatability, and muscle force repeatability metrics and 3) analyze effects of input kinematics and cadaver specimen variability. Using an industrial robot to orient the scapula range of motion (ROM), errors with repeatability of ±0.1 mm and <0.5° were achieved. Using a custom robot and a trajectory prediction algorithm to orient the humerus relative to the scapula, orientation accuracy for glenohumeral elevation, plane of elevation, and axial rotation of <3° mean absolute error was achieved. Kinematic accuracy was not affected by varying input kinematics or cadaver specimens. Muscle forces over 5 repeated setups showed variability typically <33% relative to the overall simulations. Varying cadaver specimens and subject-specific human motions showed effects on muscle forces, illustrating that the system was capable of differentiating changes in forces due to input conditions. The anterior and middle deltoid, specifically, showed notable variations in patterns across the ROM that were affected by subject-specific motion. This machine provides a platform...(truncated to fit word count, missing text in main PDF includes R2 changes).

2010 ◽  
Vol 10 (04) ◽  
pp. 643-666 ◽  
Author(s):  
ERIC BERTHONNAUD ◽  
MELISSA MORROW ◽  
GUILLAUME HERZBERG ◽  
KAI-NAN AN ◽  
JOANNES DIMNET

A three-dimensional (3D) geometric model for predicting muscle forces in the shoulder complex is proposed. The model was applied throughout the range of arm elevation in the scapular plan. In vitro testing has been performed on 13 cadaveric shoulders. The objectives were to determine homogeneous values of physiological parameters of shoulder muscles and to locate sites of muscular attachment to any bone of the shoulder complex. Muscular fiber lengths, lengths of contractile element (CE), and muscle volumes were measured, corresponding physiological cross-sectional area (PCSA) were calculated, and force/length muscle relations were found. An in vivo biplanar radiography was performed on five volunteers. The photogrammetric reconstruction of bone axes and landmarks were coupled with a geometric modeling of bones and muscle sites of attachment. Muscular paths were drawn and changes in lengths during movement have been estimated. Directions of muscle forces are the same as that of muscular path at the point of attachment to bone. Magnitudes of muscular forces were found from muscle lengths coupled with force/length relations. Passive forces were directly determined contrary to active muscle forces. A resulting active muscle force is calculated from balancing weight and passive forces at each articular center. Active muscle forces were calculated by distributing the resulting force among active muscles based on the muscular PCSA values.


1982 ◽  
Vol 53 (1) ◽  
pp. 227-244
Author(s):  
T.C. Rodman ◽  
F.H. Pruslin ◽  
V.G. Allfrey

A standardized cytological preparation of mature mouse sperm has been devised to serve as an in vitro system for probing the intra-ooplasmic molecular events of transformation of the fertilizing sperm. Two parameters of the early phase of transformation in vivo are defined at the resolution of the light microscope: deletion of sperm-unique nuclear proteins, detectable by immunofluorescence, and retention of homogeneity of the residual DNA complex, with intact chromatin boundaries detectable by ethidium bromide staining. These studies show that both parameters are conserved when in vitro sperm preparations are treated with NaCl under reducing conditions. The deletion of 2 different classes of the unique basic proteins of mouse sperm nuclei is specified by the NaCl concentration: 0.7 M-NaCl displaces the non-protamine class but not the protamines, while 1 M-NaCl displaces both. On the other hand the effects of treatment with trypsin at various concentrations and intervals are less consistent with the in vivo parameters, indicating fragmentation and displacement, not only of the sperm-unique basic proteins, but also of structural proteins believed to maintain the fundamental cohesive organization of the DNA matrix. These observations suggest that mechanisms other than proteolysis, e.g. localized changes in ionic concentrations, may participate in the post-fertilization displacement of the sperm-unique nuclear proteins in vivo. This study also supports the validity of the in vitro simulation as a model with which to probe the progression of transformation of the sperm nucleus to the zygote pronucleus.


2012 ◽  
Vol 75 (4) ◽  
pp. 690-694 ◽  
Author(s):  
SIELE CEUPPENS ◽  
MIEKE UYTTENDAELE ◽  
KATRIEN DRIESKENS ◽  
ANDREJA RAJKOVIC ◽  
NICO BOON ◽  
...  

The enteric pathogen Bacillus cereus must survive gastric passage in order to cause diarrhea by enterotoxin production in the small intestine. The acid resistance and the survival after gastric passage were assessed by in vitro experiments with acidified growth medium and gastric simulation medium with B. cereus NVH 1230-88 vegetative cells and spores. First, batch incubations at constant pH values for 4 h, which represented different physiological states of the stomach, showed that spores were resistant to any gastric condition in the pH range of 2.0 to 5.0, while vegetative cells were rapidly inactivated at pH values of ≤4.0. Second, a dynamic in vitro gastric experiment was conducted that simulated the continuously changing in vivo conditions due to digestion dynamics by gradually decreasing the pH from 5.0 to 2.0 and fractional emptying of the stomach 30 to 180 min from the start of the experiment. All of the B. cereus spores and 14% (±9%) of the vegetative cells survived the dynamic simulation of gastric passage.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Swithin S. Razu ◽  
Trent M. Guess

Computational models that predict in vivo joint loading and muscle forces can potentially enhance and augment our knowledge of both typical and pathological gaits. To adopt such models into clinical applications, studies validating modeling predictions are essential. This study created a full-body musculoskeletal model using data from the “Sixth Grand Challenge Competition to Predict in vivo Knee Loads.” This model incorporates subject-specific geometries of the right leg in order to concurrently predict knee contact forces, ligament forces, muscle forces, and ground contact forces. The objectives of this paper are twofold: (1) to describe an electromyography (EMG)-driven modeling methodology to predict knee contact forces and (2) to validate model predictions by evaluating the model predictions against known values for a patient with an instrumented total knee replacement (TKR) for three distinctly different gait styles (normal, smooth, and bouncy gaits). The model integrates a subject-specific knee model onto a previously validated generic full-body musculoskeletal model. The combined model included six degrees-of-freedom (6DOF) patellofemoral and tibiofemoral joints, ligament forces, and deformable contact forces with viscous damping. The foot/shoe/floor interactions were modeled by incorporating shoe geometries to the feet. Contact between shoe segments and the floor surface was used to constrain the shoe segments. A novel EMG-driven feedforward with feedback trim motor control strategy was used to concurrently estimate muscle forces and knee contact forces from standard motion capture data collected on the individual subject. The predicted medial, lateral, and total tibiofemoral forces represented the overall measured magnitude and temporal patterns with good root-mean-squared errors (RMSEs) and Pearson's correlation (p2). The model accuracy was high: medial, lateral, and total tibiofemoral contact force RMSEs = 0.15, 0.14, 0.21 body weight (BW), and (0.92 < p2 < 0.96) for normal gait; RMSEs = 0.18 BW, 0.21 BW, 0.29 BW, and (0.81 < p2 < 0.93) for smooth gait; and RMSEs = 0.21 BW, 0.22 BW, 0.33 BW, and (0.86 < p2 < 0.95) for bouncy gait, respectively. Overall, the model captured the general shape, magnitude, and temporal patterns of the contact force profiles accurately. Potential applications of this proposed model include predictive biomechanics simulations, design of TKR components, soft tissue balancing, and surgical simulation.


Author(s):  
Justin W. Fernandez ◽  
Hyung J. Kim ◽  
Massoud Akbarshahi ◽  
Jonathan P. Walter ◽  
Benjamin J. Fregly ◽  
...  

Many studies have used musculoskeletal models to predict in vivo muscle forces at the knee during gait [1, 2]. Unfortunately, quantitative assessment of the model calculations is often impracticable. Various indirect methods have been used to evaluate the accuracy of model predictions, including comparisons against measurements of muscle activity, joint kinematics, ground reaction forces, and joint moments. In a recent study, an instrumented hip implant was used to validate calculations of hip contact forces directly [3]. The same model was subsequently used to validate model calculations of tibiofemoral loading during gait [4]. Instrumented knee implants have also been used in in vitro and in vivo studies to quantify differences in biomechanical performance between various TKR designs [5, 6]. The main aim of the present study was to evaluate model predictions of knee muscle forces by direct comparison with measurements obtained from an instrumented knee implant. Calculations of muscle and joint-contact loading were performed for level walking at slow, normal, and fast speeds.


Author(s):  
Kavinaya C ◽  
Ashuthoshkumar L

Computation of knee modeling is a subject-specific techniquethatdefining the zero-load measurements of the cruciate and indemnity ligaments.The dynamic knee simulator was used to test the three carcass knees. The carcass knees also experiencedphysicalsachet of motion testing to discovery their inactivesort of motion in order to regulate the zero-load measurements for everymuscle bundle. Compotation multibody knee representations were shaped for each knee and classical kinematics were likened to investigational kinematics for a replicated walk series. Simple-minded non-linear mechanisminhibition elements were used to characterize cruciate and deposited particles in musclepackages in the knee representations. This learningoriginate that knee kinematics was enormously sensitive to changing of the zero-load measurement. The domino effects also recommendoptimum methods for describing each of the muscle bundle zero-load measurements, irrespective of the subject. These consequencesvalidate the significance ofthe zero-load length when modeling the knee united and verify that physicalcloak of motion dimensions can be usedto determine the passive range of motion of the knee joint. It is also supposed that the method defined here forresponsible zero-load measurement can be used for in vitro or in vivo subject-specific computational models.


2019 ◽  
Author(s):  
◽  
Swithin Samuel Razu

"The goal of this dissertation is to develop a musculoskeletal model and corroborate model predictions to experimentally measured in vivo knee contact forces, in order to study the biomechanical consequences of two different total knee arthroplasty designs. The two main contributions of this dissertation are: (1) Corroboration to experimental data: The development of an EMG-driven, full-body, musculoskeletal model with subject-specific leg geometries including deformable contacts, ligaments, 6DOF knee joint, and a shoe-floor model that can concurrently predict muscle forces, ligament forces, and joint contact forces. Model predictions of tibiofemoral joint contact forces were evaluated against the subject-specific in vivo measurements from the instrumented TKR for three distinctly different styles of over ground gait. (2) Virtual surgery in TKA: The musculoskeletal modeling methodology was then used to develop a model for one healthy participant with a native knee and then virtually replacing the native knee with fixed-bearing and mobile-bearing total knee arthroplasty designs performing gait and step-up tasks. This approach minimized the biomechanical impact of variations in sex, geometry, implant size, design and positioning, ligament location and tension, and muscle forces found across patients. The differences in biomechanics were compared for the two designs. 1.2 Significance of this Research The world health organization ranks musculoskeletal disorders as the second largest contributor to disability worldwide. Conservative estimates put the national cost of direct care for musculoskeletal disease at $212.7 billion a year [1]. Many people who suffer from neuromuscular or musculoskeletal diseases may benefit from the insights gained from surgery simulations, since musculoskeletal reconstructions are commonly performed on these individuals. Improved surgical outcomes will benefit these individuals not only in the short-term, but also in the long-term, since their future rehabilitation needs may be reduced. For example, although total knee arthroplasty is a common surgical procedure for the treatment of osteoarthritis with over 700,000 procedures performed each year [2], many patients are unhappy with the ultimate results [3]. Ten to 30% of patients report [4] pain, dissatisfaction with function, and the need for further surgery such as revision after the initial surgery resulting in costs exceeding $11 billion [5]. Potentially, simulation studies that quantify the important biomechanical variables will reduce the need for revision surgeries in patients."--Introduction.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 5
Author(s):  
Juan Sebastián Zuluaga-Morales ◽  
María Victoria Bolaños-Carmona ◽  
Carolina Cecilia Cifuentes-Jiménez ◽  
Pedro Álvarez-Lloret

In vitro simulation of natural caries is of great importance in dental research for the development of more effective clinical treatments. The pH-cycling (pHc) procedure consists of a dynamic caries process with alternating de-remineralisation periods. The current research aims to evaluate the effects of the pHc procedure on mineral dentine properties in comparison with sound dentine and natural residual caries. For this purpose, dentine slices from human third molars were submitted to cycling periods of 14 and 28 days. The chemical composition, morphological and microstructural properties of the dentine samples were examined by infrared and Raman spectroscopies, X-ray diffraction, and scanning electron microscopy techniques. In addition, the depth of the demineralisation front was evaluated by Masson’s trichrome (MT) staining. The results showed that the pHc procedure led to notable changes in the mineral composition and the crystalline characteristics with respect to sound dentine and some extent to natural caries. The MT results revealed that pHc 28 yields a deeper lesion than pHc 14, simulating potential progression of natural caries. The results of this study provide a better understanding of the mechanisms of demineralisation that could occur in an in vivo environment and provide a standardised substrate similar to natural residual caries.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Gerald Willimsky ◽  
Christin Beier ◽  
Lena Immisch ◽  
Georgios Papafotiou ◽  
Vivian Scheuplein-Schlosser ◽  
...  

Proteasome catalyzed peptide splicing (PCPS) of cancer-driving antigens could generate attractive neoepitopes to be targeted by TCR-based adoptive T cell therapy. Based on a spliced peptide prediction algorithm TCRs were generated against putative KRASG12V and RAC2P29L derived neo-splicetopes with high HLA-A*02:01 binding affinity. TCRs generated in mice with a diverse human TCR repertoire specifically recognized the respective target peptides with high efficacy. However, we failed to detect any neo-splicetope specific T cell response when testing the in vivo neo-splicetope generation and obtained no experimental evidence that the putative KRASG12V- and RAC2P29L-derived neo-splicetopes were naturally processed and presented. Furthermore, only the putative RAC2P29L-derived neo-splicetopes was generated by in vitro PCPS. The experiments pose severe questions on the notion that available algorithms or the in vitro PCPS reaction reliably simulate in vivo splicing and argue against the general applicability of an algorithm-driven 'reverse immunology' pipeline for the identification of cancer-specific neo-splicetopes.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 599 ◽  
Author(s):  
Tso ◽  
Ju ◽  
Fan ◽  
Chiang

Mycotoxin removers include enzymes and adsorbents that may be used in animal feeds to eliminate the toxic effects of mycotoxins. This study aimed to determine the removability of two different types of mycotoxin removers, adsorbents and enzyme degradation reagents (EDRs), in the simulated gastrointestinal conditions of pigs and poultry. Seven commercial mycotoxin removers, including five EDRs and two adsorbents, were tested in vitro. In this study, the supplemented dosages of mycotoxin removers used in pig and poultry feeds were the commercial recommendation ranging from 0.05% to 0.2%. For pigs, the in vitro gastric and small intestinal simulations were performed by immersing the mycotoxin-tainted feed in artificial gastric juice (AGJ) at pH 2.5 for 5 h or in artificial intestinal juice (AIJ) at pH 6.5 for 2 h to mimick in vivo conditions. For poultry, mycotoxin-tainted feeds were immersed in AGJ for 2 h at pH 4.5 and 0.5 h at pH of 2.5, respectively, to simulate crop/glandular stomach and gizzard conditions; the small intestinal simulation was in AIJ for 2 h at pH 6.5. For the pig, EDRs and adsorbents had deoxynivalenol (DON) removability (1 mg/kg) of 56% to 100% and 15% to 19%, respectively. Under the concentration of 0.5 mg/kg, the zearalenone (ZEN) removability by EDRs and adsorbents was 65% to 100% and 0% to 36%, respectively. For the simulation in poultry, the removability of DON by EDRs and adsorbents (5 mg/kg) was 56% to 79% and 1% to 36%, respectively; for the concentration of 0.5 mg/kg, the removability of ZEN by EDRs and adsorbents was 38% to 69% and 7% to 9%, respectively. These results suggest that EDRs are more effective in reducing DON and ZEN contamination compared to the adsorbent methods in the simulated gastrointestinal tracts of pig and poultry. The recoveries of DON and ZEN of pig in vitro gastrointestinal simulations were higher than 86.4% and 84.7%, respectively, with 88.8% and 85.9%, respectively, in poultry. These results demonstrated the stability and accuracy of our mycotoxin extraction process and in vitro simulation efficiency.


Sign in / Sign up

Export Citation Format

Share Document