Co-Optimization of Velocity and Charge-Depletion for Plug-In Hybrid Electric Vehicles: Accounting for Acceleration and Jerk Constraints

Author(s):  
Di Chen ◽  
Mike Huang ◽  
Anna G. Stefanopoulou ◽  
Youngki Kim

Abstract Recent advances in vehicle connectivity and automation technologies promote advanced control algorithms that co-optimize the longitudinal dynamics and powertrain operation of hybrid electric vehicles. Typically, a sequential optimization with the vehicle dynamics optimized followed by powertrain optimization is adopted to manage a number of complexities such as the inherent mixed-integer nature of the hybrid powertrain, the numerous state and control variables, the differing time scales of vehicle and powertrain subsystems, time-varying state constraints, and large horizon lengths. Instead, we solve the offline optimization problem in a centralize manner assuming exact knowledge of the lead vehicle's position over the entire trip by applying a discrete-time single shooting-based numerical approach, Discrete Mixed-Integer Shooting (DMIS), including a linearly increasing computational complexity to the problem horizon. In particular, the hierarchical problem structure is exploited to decompose the computationally intensive Hamiltonian minimization step into a set of low-dimensional optimizations. DMIS allows us to compute the direct fuel minimization problem including the vehicle and powertrain dynamics in a centralized manner to its full horizon while systematically tuning weighting factors that penalize passenger discomfort. For the first time, this study reveals that practically implemented sequential optimization exhibits similar fuel optimality as co-optimization when a certain level of passenger comfort is required.

Author(s):  
Zhila Pirmoradi ◽  
G. Gary Wang

Plug-in Hybrid Electric Vehicles (PHEVs) bear great promises for increasing fuel economy and decreasing greenhouse gas emissions by the use of advanced battery technologies and green energy resources. The design of a PHEV highly depends on several factors such as the selected powertrain configuration, control strategy, sizes of drivetrain components, expected range for propulsion purely by electric energy, known as AER, and the assumed driving conditions. Accordingly, design of PHEV powertrains for diverse customer segments requires thorough consideration of the market needs and the specific performance expectations of each segment. From the manufacturing perspective, these parameters provide the opportunity of mass customization because of the high degree of freedom, especially when the component sizes and control parameters are simultaneously assessed. Based on a nonconventional sensitivity and correlation analysis performed on a simulation model for power-split PHEVs in this study, the product family design (PFD) concept and its implications will be investigated, and limitations of PFD for such a complex product along with directions for efficient family design of PHEVs will be discussed.


2021 ◽  
Vol 54 (4) ◽  
pp. 599-606
Author(s):  
Punyavathi Ramineni ◽  
Alagappan Pandian

Many pollution-related issues are raising due to the usage of conventional internal combustion engines (ICEs) vehicles. Electric Vehicles/ Hybrid electric vehicles (EVs/HEVs) are the finest solutions to overcome those problems associated with ICE-based vehicles. The EVs are introduced with a signal energy source (SES), which is not a successful attempt, especially during transient vehicles, driving, etc. Multiple energy sources (MES) EVs are introduced to attain better performance than the SES vehicles, which is obtained by combining two sources like battery/fuel cells, ultracapacitor. In this contest, energy management (EMNG) plays a vital role in sharing the load to the sources as per the EVs requirement. In the case of MES-based EVs, the controller always plays a significant role in the related EMNG system because it is the key factor in improving vehicle efficiency. In this article, a study has mainly been done related to several conventional, intelligent controllers and control algorithms to do the proper EMNG between sources present in the EV.


Automatica ◽  
2021 ◽  
Vol 123 ◽  
pp. 109325 ◽  
Author(s):  
Nicolò Robuschi ◽  
Clemens Zeile ◽  
Sebastian Sager ◽  
Francesco Braghin

2014 ◽  
Vol 543-547 ◽  
pp. 1246-1249
Author(s):  
Liang Zhang ◽  
Bin Jiao ◽  
Lei Li

The modeling method and control strategy for series hybrid electric vehicles were presented in this paper. Firstly, the system structure and operation principles are discussed systematically; and then a control strategy is proposed based on the modeling of powertrain. Control strategy focus on the multi-modes switch logic and power distribution. In the last part of this paper, the simulation made in MATLAB/Simulink was introduced, which results indicate that the model and control strategy are correct.


2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110360
Author(s):  
Yiqun Liu ◽  
Y Gene Liao ◽  
Ming-Chia Lai

This paper intends to provide design selections of hybrid powertrain architectures in 48 V mild hybrid electric vehicles. Based on the location of the electric machine in the driveline, the hybrid powertrain architectures can be categorized into five groups, P0, P1, P2, P3, and P4. This paper uses simulation software to investigate the fuel economy improvements and emission reduction of 48 V mild hybrid electric vehicles with P0, P1, and P2 architectures. A baseline conventional and a 12 V start/stop vehicle models based on the production vehicle are built for comparison. The 48 V battery pack model is based on experimental data including open-circuit voltage and internal resistance of a 20 Ah lithium polymer battery cell. Four standard driving cycles are used to assess the fuel economy and emissions of the vehicle models. With features of engine idle elimination, electric power assist, and regenerative braking, the 48 V P0 and P1 respectively gains average 13.5% and 15.5% simulated fuel economy compared to baseline vehicle. The 48 V P2 enables feature of electric launch/driving and improves the fuel economy by average 18.5% better than baseline vehicle. The 48 V mild hybrid system seems to be one of the promising techniques to meet future fuel economy standards and emission regulations.


Sign in / Sign up

Export Citation Format

Share Document