Ex-situ Spectroscopic Characterization of Residual Effects of Thermomechanical Loading on Polyurea

Author(s):  
Nha Uyen Huynh ◽  
George Youssef

Abstract The residual effect of thermally and mechanically loaded polyurea samples was investigated in this study using terahertz time-domain spectroscopy (THz-TDS), operating in the transmission mode. Samples of different thicknesses were submerged in liquid nitrogen and reached cryogenic isothermal condition before equilibrating at room temperature. Another set of samples were extracted from quasi-statically loaded strips. All samples were then interrogated using THz-TDS since terahertz waves exhibit nonionizing interactions with polymers, eliminating the need for any post-loading preparatory steps of the samples. The time-domain terahertz signals were used to extract the optical and electrical properties as a function of sample thickness and loading conditions. The residual effect was prominent in the mechanically loaded samples compared to a nearly negligible presence in thermally loaded ones. On average, the thermally loaded polyurea results were subtle compared to the results of the unloaded samples, whereas samples that were mechanically stretched showed a considerable difference. Spectral analysis reported the frequency-dependent, complex refractive index of virgin and loaded polyurea as a function of thickness and spectral peaks associated with fundamental vibrational modes of the polyurea structure. The spectral peaks were in good agreement with previous research while elucidating the residual effect via the disappearance of three peaks in the low terahertz regime for mechanically loaded samples. In general, the refractive index was dependent on the loading conditions. Terahertz spectroscopy was shown to be a promising tool for future in situ and in operando investigations of field-dependent polymer responses.

2013 ◽  
Vol 52 (4R) ◽  
pp. 042401 ◽  
Author(s):  
Saroj R. Tripathi ◽  
Makoto Aoki ◽  
Masanori Takeda ◽  
Toshiaki Asahi ◽  
Iwao Hosako ◽  
...  

2021 ◽  
Vol 118 (4) ◽  
pp. 042101
Author(s):  
Verdad C. Agulto ◽  
Kazuhiro Toya ◽  
Thanh Nhat Khoa Phan ◽  
Valynn Katrine Mag-usara ◽  
Jiajun Li ◽  
...  

Author(s):  
V. R. Bilyk ◽  
K. A. Grishunin

The recent progress in terahertz time-domain spectroscopy enables the accurate and reliable measurements of dielectric properties in comparison with the traditional far-infrared spectroscopy using an incoherent light source. The broadband THz-TDS is a powerful tool to determine the real and imaginary parts of a complex dielectric constant by the transmission which allows to detect the parameters of the soft modes in ferroelectrics. In this work, the terahertz time-domain spectroscopy was used to investigate the dependence of the complex refractive index of a single-crystal quantum paraelectric strontium titanate in the terahertz frequency range from 0.3 to 2 THz. It was shown that the low-frequency terahertz response of the material is determined by the soft phonon mode TO1. The measured experimental dependences showed a good agreement with the theoretical curves obtained from the analysis of the Lorentz oscillator model for the complex dielectric constant of strontium titanate. The obtained results are necessary for understanding the principle of possibility to manipulate the order parameter in ferroelectric materials and can be used to create energy-efficient memory devices with a speed of recording information close to the theoretical limit.


2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


Lubricants ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 18 ◽  
Author(s):  
Ali Abdul-Munaim ◽  
Jan Ornik ◽  
Martin Koch ◽  
Dennis Watson

Diesel engine oil was subjected to thermal oxidization (TO) for six periods of time (0 h, 24 h, 48 h, 72 h, 96 h, and 120 h) and was subsequently characterized by terahertz time domain spectroscopy (THz-TDS). The THz refractive index generally increased with oxidation time. The measurement method illustrated the potential of THz-TDS when a fixed setup with a single cuvette is used. A future miniaturized setup installed in an engine would be an example of a fixed setup. For the refractive index, there were highly significant differences among the oxidation times across most of the 0.3–1.7 THz range.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Yizhang Li ◽  
Xinyang Miao ◽  
Honglei Zhan ◽  
Wei Wang ◽  
Rima Bao ◽  
...  

Optical assessment of oil shale using terahertz time-domain spectroscopy (THz-TDS) was carried out to study oil potential. Fischer assay testing was employed to obtain the oil yield of oil shale specimens to examine the difference of oil potential between oil shale samples from three regions: Beipiao, Barkol, and Huadian in China. Then, two types of specimens from each area were prepared for the optical tests and the results were compared. The refractive index (n) at 0.2–1.2 THz was derived; n decreased slowly with increasing frequency for all the specimens despite the oscillation pattern observed at lower frequencies. The specimen preparation method that mixed the powdered material led to minor differences between the specimens. The different response of kerogen to the terahertz pulse depending on the kerogen's evolutionary stage leads to a difference in the refractive index between the specimens from the various regions. This study indicates that using THz-TDS to evaluate the oil content in oil shale without inducing reaction within the specimen can be an effective method for resource exploration.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 89 ◽  
Author(s):  
Dongdong Ye ◽  
Weize Wang ◽  
Jibo Huang ◽  
Xiang Lu ◽  
Haiting Zhou

In this work, a terahertz time-domain spectroscopy (THz-TDS) system was used to measure the thickness of thermal barrier coatings (TBCs) and characterize the interface morphology of TBCs after erosion. Reflection mode, with an angle of incidence of 0, was used for inspection before and after erosion. The refractive index, thickness, and internal structure evolution tendency of the yttria-stabilized zirconia (YSZ) top coat were estimated under consideration of the interaction between the pulsed THz waves and the TBCs. The surface roughness of the top coat surface was considered for the errors analysis in the refractive index and thickness measurement. To reduce the errors introduced by the refractive index change after erosion, two mathematical models were built to assess the thickness loss. Then, the thickness loss was compared with results estimated by the micrometer inspection method. Finally, the basic erosion sample profile with Ra roughness was obtained, and the broadening of THz pulses were suggested as a possible measure for the top coat porosity change, showing that THz waves can be a novel online non-destructive and non-contact evaluation method that can be widely utilized to evaluate the integrity of TBCs applied to gas turbine blades.


Sign in / Sign up

Export Citation Format

Share Document