A Numerical Study of the Thermal Performance of a Tape Ball Grid Array (TBGA) Package

1999 ◽  
Vol 122 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Sanjeev B. Sathe ◽  
Bahgat G. Sammakia

This paper deals with the thermal management of a TBGA chip carrier package. In TBGA packages the backside of the chip is available for heat sink or heat spreader (cover plate) attach. By attaching a heat sink directly to the chip and using a thin layer of high thermal conductivity adhesive, a very low internal thermal resistance can be achieved. The package is attached to an organic card and placed vertically in a channel. A three-dimensional conjugate heat transfer model is used, accounting for conduction and radiation in the package and card and convection in the surrounding air. A simplified turbulence model is developed to predict temperatures in the low Re turbulence regime. A parametric study is performed to evaluate the effects of card design, air velocities, interconnect thermal conductivities and thermal radiation on the chip junction temperatures. An experimental study was also conducted to verify the model. Even though the geometry is highly complex due to the multilayer construction of the module and the card, agreement between the model and the experimental measurement is excellent. It was shown that radiation heat transfer can be an equally significant mode as convection in the natural convection regime. [S1043-7398(00)01302-5]

2011 ◽  
Vol 52-54 ◽  
pp. 1057-1061
Author(s):  
Tao Nie ◽  
Wei Qiang Liu

To obtain temperature distribution in regenerative-cooled liquid propellant rocket nozzle quickly and accurately, three-dimensional numerical simulation employed using empirical formulas. A reduced one-dimensional model is employed for the coolant flow and heat transfer, while three dimensional heat transfer model is used to calculate the coupling heat transfer through the wall. The geometrical model is subscale hot-firing chamber. The numerical results agree well with experimental data, while temperature field in nozzle obtained. In terms of computing time and accuracy of results, this method can provide a reference for optimization design and performance estimation.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Justin Lapp ◽  
Wojciech Lipiński

A transient three-dimensional heat transfer model is developed for a 3 kWth solar thermochemical reactor for H2O and CO2 splitting via two-step nonstoichiometric ceria cycling. The reactor consists of a windowed solar receiver cavity, counter-rotating reactive and inert cylinders, and insulated reactor walls. The counter-rotating cylinders allow for continuous fuel production and heat recovery. The model is developed to solve energy conservation equations accounting for conduction, convection, and radiation heat transfer modes, and chemical reactions. Radiative heat transfer is analyzed using a combination of the Monte Carlo ray-tracing method, the net radiation method, and the Rosseland diffusion approximation. Steady-state temperatures, heat fluxes, and nonstoichiometry are reported. A temperature swing of up to 401 K, heat recovery effectiveness of up to 95%, and solar-to-fuel efficiency of up to 5% are predicted in parametric studies.


2012 ◽  
Vol 516-517 ◽  
pp. 107-110
Author(s):  
Tao Nie ◽  
Wei Qiang Liu

By the use of the map of the thermal resistance among volume cells, we establish a coupled heat transfer model of the hot gas, chamber wall and coolant. A reduced one-dimensional model was employed for the coolant flow and heat transfer, and three dimensional heat transfer model was used to calculate the coupling heat transfer through the wall, considering heat transfer at circumferential direction, axial direction and radial direction. Based on the study the mechanism of the cooling structure heat transfer, the computing model was employed and achieved the rule of heat flux and temperature of gas wall. Simultaneously, influence of different cooling structure was performed. The results indicated that the cooling structure with raised structure could better reduce the temperature of the chamber wall.


Author(s):  
M. L.-J. Levac ◽  
H. M. Soliman ◽  
S. J. Ormiston

Micro-channel heat sinks are currently at the forefront of cooling technologies for computer chips where the input heat flux is projected to exceed 100 W/cm2 [1, 2]. The quest for better heat-sink designs has produced different ideas, one of which is the idea of using multi-layered micro-channel heat sinks [3, 4]. The objectives of the present investigation were to conduct a detailed numerical study of the hydrodynamic and thermal behavior of a two-layered micro-channel heat sink and to compare the performance of the two-layered heat sink with that of a single-layered sink under laminar flow conditions.


Author(s):  
Yan Fan ◽  
Poh Seng Lee ◽  
Li-Wen Jin ◽  
Beng Wah Chua ◽  
Na-Si Mou ◽  
...  

A novel cylindrical oblique fin minichannel heat sink was proposed to cool cylindrical heat sources using forced convection scheme. In this paper, parametric numerical study was employed to understand the importance of the various dimensions of the oblique fin heat sinks and their heat transfer performance and pressure drop. Three dimensional conjugated heat transfer simulations were carried out using Computational Fluid Dynamics (CFD) method based on laminar flow to determine its performance in the oblique fin heat sink. 214 parametric studies were performed by varying the oblique angle from 20° to 45°, secondary channel gap from 1mm to 5mm and Reynolds number from 200 to 900. Their thermal performance was compared for a constant heat flux of 1 W/cm2. The results show that the flow is main channel directed in shorter secondary channel structure while the flow becomes secondary channel directed in longer secondary channel structure. Secondary flow becomes more effective in heat transfer when increasing the secondary channel gap. When the oblique angle increases, more flow will be diverted into secondary channel and improve flow mixing to enhance the heat transfer. The best configuration in this paper was suggested based on the numerical data point. The overall performance can be improved up to 110% at Reynolds number of 900 compared with conventional straight fin minichannel. Therefore, this is the attractive candidate for future cylindrical heat sinks.


2019 ◽  
Vol 256 ◽  
pp. 03003
Author(s):  
Zijuan Wang ◽  
Ying Zhou ◽  
Han Xiao ◽  
Shao Jingyi

The surface temperature uniformity of a test platform with an effective test area of 600 mm × 600 mm was numerically studied. The conductive heat transfer model for the test platform and the device under test (DUT) installed on the surface was established in the present work, as well as the radiation heat transfer model from the platform surface to the background temperature. The platform surface was divided into 5 or 9 regions where heated independently to make the surface temperature consistent. The temperature uniformity of these two partition designs was compared. The result shows that the 9 regions design has higher temperature uniformity at both target temperatures of -10°C and +45°C.


2006 ◽  
Vol 128 (4) ◽  
pp. 305-310
Author(s):  
Sandeep S. Tonapi ◽  
Sanjeev B. Sathe ◽  
Bahgat G. Sammakia ◽  
K. Srihari

This paper presents the results of a comprehensive numerical study of the thermal performance of Tape Ball Grid Array package mounted on one side of a printed circuit board as well as packages mounted in back-to-back and offset configurations. A cover plate is attached to the back side of the chips to enhance heat transfer from the module. The assembled organic carrier is placed in a vertical channel. A conjugate heat transfer model is used which accounts for conduction in the packages and the card and convection in the surrounding air. The effect of location of the modules on a card with zero, one and two power planes is evaluated for thermal performance. Heat dissipation is studied for forced convection (2, 1, and 0.5m∕s). Comparison is made for single sided and back-to-back cases.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Maxim Solovchuk ◽  
Hong-An Deng ◽  
Tony W. H. Sheu

Moxibustion is a thermal therapy in traditional Chinese medicine that relies on the heat from burning moxa to be transferred beneath the skin surface. Although moxibustion has long been in widespread practice, the mechanism of heat transfer modality and temperature distribution during this treatment is not yet well understood. The current paper presents the first examination by magnetic resonance imaging (MRI) of the three-dimensional temperature elevation during moxibustion treatment. A mathematical model for the prediction of temperature elevation during moxibustion therapy has been constructed and compared with the experimental data. Good agreement between the measured temperature and the results of numerical calculations has been found. Tissue up to 3 cm deep can be heated during the treatment. It was revealed that both heat conduction and radiation heat transfer play important roles during the treatment. The results presented in the current paper can be used for understanding the mechanisms of Chinese medicine and developing useful guidelines for Chinese medicine doctors.


Sign in / Sign up

Export Citation Format

Share Document