Heat Transfer Characteristics of an Impingement Plate Used in a Turbine Vane Cooling System

Author(s):  
Changmin Son ◽  
David Gillespie ◽  
Peter Ireland ◽  
Geoffrey M. Dailey

Detailed heat transfer coefficient distributions have been measured on both surfaces of the impingement plate of an engine-representative impingement cooling system using the thermochromic liquid crystal (TLC) transient technique. The color images of the TLC on the impingement downstream surface provide evidence of a re-impingement flow. The re-impingement flow is found to contribute to local increases in the heat transfer on the impingement plate downstream surface. It was found that the average heat transfer coefficient on the impingement downstream surface is about 50% of the average target surface heat transfer coefficient. The results are compared with a previously reported correlation.

Author(s):  
Changmin Son ◽  
Geoffery Dailey ◽  
Peter Ireland ◽  
David Gillespie

The inclusion of roughness elements on the target surface of a turbine aerofoil impingement cooling system is an attractive means of heat transfer enhancement. In such a system, it is important to minimise additional pressure loss caused by the roughness elements and thus their shape, size and position need to be optimised. The research showed how heat transfer enhancement is normally achieved at the expense of extra pressure loss. A hexagonal roughness element designed by the authors showed up to 10% heat transfer enhancement with minimal extra pressure loss. The present work includes shear pattern visualisation on the target surface, pressure loss measurements and heat transfer coefficient measurements for an impingement cooling system with simply shaped roughness elements-specifically cylindrical & diamond pimples. Flow visualisation results and pressure loss measurements for the above configurations provided criteria for selecting the shape, size and position of the roughness elements. The detailed heat transfer measurements on the target surface and over the roughness elements were used to explain the heat transfer enhancement mechanisms. It was found that the largest contribution to heat transfer is the impingement stagnation point and the developing wall jet regions. However, the research showed that the low heat transfer coefficient region could be made to contribute more by using strategically located roughness elements. A hexagonal rim was designed to cover the complete low heat transfer coefficient region midway between neighbouring jets. The effect of the height, cross sectional shape and wall angle of the hexagonal rim were studied using a series of heat transfer and pressure loss experiments. The transient heat transfer tests were conducted using a triple thermochromic liquid crystal technique and the thermal transient was produced by a fine wire mesh heater. The heat transfer coefficient over the pimples was measured using a hybrid transient method that analysed the thermal transient of the copper pimple. The detailed heat transfer coefficient distributions over the complete area of the target surface provided comprehensive understanding of the performance of the hexagonal rim. Tests were conducted at three different mass flow rates for each configuration. The average and local jet Reynolds numbers varied between 21500 and 31500, and 17000 and 41000 respectively.


Author(s):  
Y. Yu ◽  
M. K. Chyu

This study investigated a practical but never exploited issue concerning the influence of flow leakage through a gap downstream on the film cooling performance with a row of discrete-hole injection. A heat transfer system as such can be categorized as either a three-temperature or a four-temperature problem, depending on the direction of leakage through the gap. To fully characterize a three-temperature based film-cooling system requires knowledge of both local film effectiveness and heat transfer coefficient. A second film effectiveness is necessary for characterizing a four-temperature problem. All these variables can be experimentally determined, based on the transient method of thermochromic liquid crystal imaging. Although the overall convective transport in the region is expected to be dependent on the blowing ratios of the coolants, the mass flow ratio of the two injectants, and the geometry, the current results indicated that the extent of flow injection or extraction through the gap has significant effects on the film effectiveness and less on the heat transfer coefficient which is primarily dominated by the geometric disturbance of gap presence.


1998 ◽  
Vol 120 (1) ◽  
pp. 92-99 ◽  
Author(s):  
D. R. H. Gillespie ◽  
Z. Wang ◽  
P. T. Ireland ◽  
S. T. Kohler

Cast impingement cooling geometries offer the gas turbine designer higher structural integrity and improved convective cooling when compared to traditional impingement cooling systems, which rely on plate inserts. In this paper, it is shown that the surface that forms the jets contributes significantly to the total cooling. Local heat transfer coefficient distributions have been measured in a model of an engine wall cooling geometry using the transient heat transfer technique. The method employs temperature-sensitive liquid crystals to measure the surface temperature of large-scale perspex models during transient experiments. Full distributions of local Nusselt number on both surfaces of the impingement plate, and on the impingement target plate, are presented at engine representative Reynolds numbers. The relative effects of the impingement plate thermal boundary condition and the coolant supply temperature on the target plate heat transfer have been determined by maintaining an isothermal boundary condition at the impingement plate during the transient tests. The results are discussed in terms of the interpreted flow field.


Author(s):  
David R. H. Gillespie ◽  
Zuolan Wang ◽  
Peter T. Ireland ◽  
S. Toby Kohler

Cast impingement cooling geometries offer the gas turbine designer higher structural integrity and improved convective cooling when compared to traditional impingement cooling systems which rely on plate inserts. In this paper, it is shown that the surface which forms the jets contributes significantly to the total cooling. Local heat transfer coefficient distributions have been measured in a model of an engine wall cooling geometry using the transient heat transfer technique. The method employs temperature sensitive liquid crystals to measure the surface temperature of large scale perspex models during transient experiments. Full distributions of local Nusselt number on both surfaces of the impingement plate, and on the impingement target plate are presented at engine representative Reynolds numbers. The relative effects of the impingement plate thermal boundary condition and the coolant supply temperature on the target plate heat transfer has been determined by maintaining an isothermal boundary condition at the impingement plate during the transient tests. The results are discussed in terms of the interpreted flow field.


1998 ◽  
Vol 120 (3) ◽  
pp. 541-548 ◽  
Author(s):  
Y. Yu ◽  
M. K. Chyu

This study investigated a practical but never exploited issue concerning the influence of flow leakage through a gap downstream on the film cooling performance with discrete-hole injection. A heat transfer system as such can be categorized as either a three-temperature or a four-temperature problem, depending on the direction of leakage through the gap. To characterize a three-temperature-based film cooling system fully requires knowledge of both local film effectiveness and heat transfer coefficient. A second film effectiveness is necessary for characterizing a four-temperature problem. All these variables can be experimentally determined, based on the transient method of thermochromic liquid crystal imaging. Although the overall convective transport in the region is expected to be dependent on the blowing ratios of the coolants, the mass flow ratio of the two injectants, and the geometry, the current results indicated that the extent of flow injection or extraction through the gap has significant effects on the film effectiveness and less on the heat transfer coefficient, which is primarily dominated by the geometric disturbance of gap presence.


2013 ◽  
Vol 275-277 ◽  
pp. 83-86
Author(s):  
Chun Lin Zhang ◽  
Nian Su Hu ◽  
Wen Yang ◽  
Jian Mei Wang ◽  
Min Li ◽  
...  

With the development of the power grid, the proportion of large capacity unit is increasing rapidly. It requires a more in-depth study on the reliability of the unit, especially for the unit adjusting the peak. This paper concerned on the research of the surface heat transfer coefficient, which is the key factor affect the precision in thermal stress analysis. The surface heat transfer coefficient is obtained via the numerical calculation for the steam’s flow state and the transient heat transfer between rotor. This paper mainly describes the steam’s flow state and the transient heat transfer with the steam seal, and the results show that the direct numerical calculation is resultful in this subject.


Author(s):  
С.В. Бородкин ◽  
А.В. Иванов ◽  
И.Л. Батаронов ◽  
А.В. Кретинин

На основе уравнений теплопереноса в движущейся среде и соотношений теплопередачи в термоэлектрическом охладителе приведен сравнительный анализ методик расчета поля температуры в теплонапряженном элементе. Рассмотрены методики на основе: 1) теплового баланса, 2) среднего коэффициента теплоотдачи, 3) дифференциального коэффициента теплоотдачи, 4) прямого расчета в рамках метода конечных элементов. Установлено, что первые две методики не дают адекватного распределения поля температур, но могут быть полезны для определения принципиальной возможности заданного охлаждения с использованием термоэлектрических элементов. Последние две методики позволяют корректно рассчитать температурное поле, но для использования третьей методики необходим дифференциальный коэффициент теплоотдачи, который может быть найден из расчета по четвертой методике. Сделан вывод о необходимости комбинированного использования методик в общем случае. Методы теплового баланса и среднего коэффициента теплоотдачи позволяют определить принципиальную возможность использования термоэлектрического охлаждения конкретного теплонапряженного элемента (ТЭ). Реальные параметры системы охлаждения должны определяться в рамках комбинации методов дифференциального коэффициента теплоотдачи и конечных элементов (МКЭ). Первый из них позволяет определить теплонапряженные области и рассчитать параметры системы охлаждения, которые обеспечивают тепловую разгрузку этих областей. Второй метод используется для проведения численных экспериментов по определению коэффициента теплоотдачи реальной конструкции The article presents on the basis of the equations of heat transfer in a moving medium and the relations of heat transfer in a thermoelectric cooler, a comparative analysis of methods for calculating the temperature field in a heat-stressed element. We considered methods based on: 1) heat balance, 2) average heat transfer coefficient, 3) differential heat transfer coefficient, 4) direct calculation using the finite element method. We established that the first two methods do not provide an adequate distribution of the temperature field but can be useful for determining the principal possibility of a given cooling using thermoelectric elements. The last two methods allow us to correctly calculate the temperature field; but to use the third method, we need a differential heat transfer coefficient, which can be found from the calculation using the fourth method. We made a conclusion about the need for combined use of methods in a general case. The methods of thermal balance and average heat transfer coefficient allow us to determine the principal possibility of using thermoelectric cooling of a specific heat-stressed element. The actual parameters of the cooling system should be determined using a combination of the differential heat transfer coefficient and the finite element method. The first of them allows us to determine the heat-stressed areas and calculate the parameters of the cooling system that provide thermal discharge of these areas. The second method is used to perform numerical experiments to determine the heat transfer coefficient of a real structure


Sign in / Sign up

Export Citation Format

Share Document