Effect of Rib Turbulators in the First Pass on Heat Transfer Distributions in a Two-Pass Channel Connected by Two Rows of Holes

Author(s):  
Srinath V. Ekkad ◽  
David Kontrovitz ◽  
Hasan Nasir ◽  
Gautam Pamula ◽  
Sumanta Acharya

This paper is a continued study of new internal channel cooling designs for modern gas turbine blades. In previous studies, the enhanced cooling in the second pass of a serpentine channel was achieved by a combination of impingement and crossflow-induced swirl. A holed or slotted divider wall replaced the 180° U-turn connecting the two legs of the serpentine channel. Flow from one coolant passage to the adjoining coolant passage was achieved through a series of straight and angled holes and a two-dimensional slot placed along the dividing wall. In this study, the focus is to enhance the heat transfer in the first pass of the two-pass channel using traditional rib turbulators. The effect of ribs in the first pass on the overall second pass heat transfer enhancement is compared to channels with no rib turbulators. Heat transfer distributions are compared for channels with and without ribs for three-channel flow Reynolds numbers ranging between 1.0×104 − 5.0×104. Results show that the presence of the ribs in the first pass reduces the heat transfer coefficients slightly in the second pass compared to the no-ribs channels. However, the first pass heat transfer is significantly enhanced over the case without ribs. In effect, the overall heat transfer enhancement for the combined two passes is significantly enhanced. Three different rib configurations, 90° ribs, 60° angled forward facing towards divider wall, and 60° angled backward facing away from divider wall, are studied for all Reynolds numbers and divider wall geometries. The presence of ribs in the first pass does not only decrease the enhanced heat transfer in the second pass but also provides higher heat transfer enhancement in the first pass resulting in an increase in overall heat transfer enhancement for the entire two-pass channel.

Author(s):  
I-Lun Chen ◽  
Izzet Sahin ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Robert Krewinkel

Abstract The thermal performance of two V-type rib configurations is measured in a rotating, two-pass cooling channel. Modeling modern, high pressure, turbine blades, the cross-section of the cooling channel varies from the first pass to the second pass. The coolant travels radially outward in the rectangular first pass with an aspect ratio of 4:1. Near the tip region, the coolant turns 180°, and travels radially inward in a 2:1 rectangular channel. The serpentine passage is positioned such that both the first and second passes are oriented 90° to the direction of rotation. The leading and trailing surfaces of both the first and second pass of the channel are roughened with V-type rib turbulators. The thermal performance of two V-type configurations is measured in this two-pass channel. The first V-shaped configuration is similar to a traditional V-shaped turbulator with a narrow gap at the apex of the V. The configuration is modified by off-setting one leg of the V to create a staggered discrete, V-shaped configuration. The ribs are oriented 45° relative to the streamwise coolant direction. In both passes, the rib spacing is P/e = 10 and the rib height – to – channel height is e/H = 0.16. The heat transfer enhancement and frictional losses are measured for both rib configurations with varying Reynolds and rotation numbers. The Reynolds number varies from 10,000 to 45,000 in the AR = 4:1 first pass; this corresponds to 16,000 to 73,500 in the AR = 2:1 second pass. Considering the effect of rotation, the rotational speed of the channel varies from 0–400 rpm with maximum rotation numbers of 0.39 and 0.16 in the first and second passes, respectively. The heat transfer enhancement on both the leading and trailing surfaces of the first pass of the 45° V-shaped channel is slightly reduced with rotation. In the second pass, the heat transfer increases on the leading surface while it decreases on the trailing surface. The 45° staggered, discrete V-shaped ribs provide increased heat transfer and thermal performance compared to the traditional V-shaped and standard, 45° angled rib turbulators.


Author(s):  
Michael Huh ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

The focus of the current study was to determine the effects of rib spacing on heat transfer in rotating 1:4 AR channels. In the current study, heat transfer experiments were performed in a two-pass, 1:4 aspect ratio channel, with a sharp bend entrance. The channel leading and trailing walls in the first pass and second pass utilized angled rib turbulators (45° to the mainstream flow). The rib height-to-hydraulic diameter ratio (e/Dh) was held constant at 0.078. The channel was oriented 90° to the direction of rotation. Three rib pitch-to-rib height ratios (P/e) were studied: P/e = 2.5, 5, and 10. Each ratio was tested at five Reynolds numbers: 10K, 15K, 20K, 30K and 40K. For each Reynolds number, experiments were conducted at five rotational speeds: 0, 100, 200, 300, and 400 rpm. Results showed that the sharp bend entrance has a significant effect on the first pass heat transfer enhancement. In the second pass, the rib spacing and rotation effect are reduced. The P/e = 10 case had the highest heat transfer enhancement based on total area, whereas the P/e = 2.5 had the highest heat transfer enhancement based on the projected area. The current study has extended the range of the rotation number (Ro) and local buoyancy parameter (Box) for a ribbed 1:4 aspect ratio channel up to 0.65 and 1.5, respectively. Correlations for predicting heat transfer enhancement, due to rotation, in the ribbed (P/e = 2.5, 5, and 10) 1:4 aspect ratio channel, based on the extended range of the rotation number and buoyancy parameter, are presented in the paper.


2003 ◽  
Vol 125 (2) ◽  
pp. 274-280 ◽  
Author(s):  
H. K. Moon ◽  
T. O’Connell ◽  
R. Sharma

The heat transfer rate from a smooth wall in an internal cooling passage can be significantly enhanced by using a convex patterned surface on the opposite wall of the passage. This design is particularly effective for a design that requires the heat transfer surface to be free of any augmenting features (smooth). Heat transfer coefficients on the smooth wall in a rectangular channel, which had convexities on the opposite wall were experimentally investigated. Friction factors were also measured to assess the thermal performance. Relative clearances δ/d between the convexities and the smooth wall of 0, 0.024, and 0.055 were investigated in a Reynolds number ReHD range from 15,000 to 35,000. The heat transfer coefficients were measured in the thermally developed region using a transient thermochromic liquid crystal technique. The clearance gap between the convexities and the smooth wall adversely affected the heat transfer enhancement NuHD. The friction factors (f ), measured in the aerodynamically developed region, were largest for the cases of no clearance δ/d=0). The average heat transfer enhancement Nu¯HD was also largest for the cases of no clearance δ/d=0, as high as 3.08 times at a Reynolds number of 11,456 in relative to that Nuo of an entirely smooth channel. The normalized Nusselt numbers Nu¯HD/Nuo, as well as the normalized friction factors f/fo, for all three cases, decreased with Reynolds numbers. However, the decay rate of the friction factor ratios f/fo with Reynolds numbers was lower than that of the normalized Nusselt numbers. For all three cases investigated, the thermal performance Nu¯HD/Nuo/f/fo1/3 values were within 5% to each other. The heat transfer enhancement using a convex patterned surface was thermally more effective at a relative low Reynolds numbers (less than 20,000 for δ/d=0) than that of a smooth channel.


Author(s):  
Longzhong Huang ◽  
Terrence Simon ◽  
Min Zhang ◽  
Youmin Yu ◽  
Mark North ◽  
...  

A synthetic jet is an intermittent jet which issues through an orifice from a closed cavity over half of an oscillation cycle. Over the other half, the flow is drawn back through the same orifice into the cavity as a sink flow. The flow is driven by an oscillating diaphragm, which is one wall of the cavity. Synthetic jets are widely used for heat transfer enhancement since they are effective in disturbing and thinning thermal boundary layers on surfaces being cooled. They do so by creating an intermittently-impinging flow and by carrying to the hot surface turbulence generated by breakdown of the shear layer at the jet edge. The present study documents experimentally and computationally heat transfer performance of an array of synthetic jets used in a heat sink designed for cooling of electronics. This heat sink is comprised of a series of longitudinal fins which constitute walls of parallel channels. In the present design, the synthetic jet flow impinges on the tips of the fins. In the experiment, one channel of a 20-channel heat sink is tested. A second flow, perpendicular to the jet flow, passes through the channel, drawn by a vacuum system. Surface- and time-averaged heat transfer coefficients for the channel are measured, first with just the channel flow active then with the synthetic jets added. The purpose is to assess heat transfer enhancement realized by the synthetic jets. The multiple synthetic jets are driven by a single diaphragm which, in turn, is activated by a piezoelectrically-driven mechanism. The operating frequency of the jets is 1250 Hz with a cycle-maximum jet velocity of 50 m/s, as measured with a miniature hot-film anemometer probe. In the computational portion of the present paper, diaphragm movement is driven by a piston, simulating the experimental conditions. The flow is computed with a dynamic mesh using the commercial software package ANSYS FLUENT. Computed heat transfer coefficients show a good match with experimental values giving a maximum difference of less than 10%. The effects of amplitude and frequency of the diaphragm motion are documented. Changes in heat transfer due to interactions between the synthetic jet flow and the channel flow are documented in cases of differing channel flow velocities as well as differing jet operating conditions. Heat transfer enhancement obtained by activating the synthetic jets can be as large as 300% when the channel flow is of a low velocity compared to the synthetic jet peak velocity (as low as 4 m/s in the present study).


Author(s):  
Wenwu Zhou ◽  
Hui Hu ◽  
Yu Rao

Due to the dimple’s unique characteristics of comparatively low pressure loss penalty and good heat transfer enhancement performance, dimple provides a very desirable alternative internal cooling technique for gas turbine blades. In the present study, an experimental investigation was conducted to quantify the flow characteristics over staggered dimple arrays and to examine the vortex structures inside the dimples. In addition to the surface pressure measurements, a high-resolution digital Particle Image Velocimetry (PIV) system was also utilized to achieve detailed flow field measurements to quantify the characteristics of the turbulent channel flow over the dimple arrays in terms of the ensemble-averaged velocity, Reynolds shear stress and turbulence kinetic energy (TKE) distributions. The experimental measurement results show that the friction factor of the dimpled surface is much higher than that of a flat surface. The measured pressure distribution within a dimple reveals clearly that flow separation and attachment would occur inside each dimple. In comparison with those of a conventional channel flow with flat surface, the channel flow over the dimpled arrays was found to have much stronger Reynolds stress and higher TKE level. Such unique flow characteristics are believed to be the reasons why a dimpled surface would have a better heat transfer enhancement performance for internal cooling of turbine blades as reported in those previous studies.


2002 ◽  
Vol 124 (6) ◽  
pp. 1158-1168 ◽  
Author(s):  
M. C. Gentry ◽  
A. M. Jacobi

Using delta wings placed at the leading edge of a flat plate, streamwise vortices are generated that modify the flow; the same wings are also used to modify a developing channel flow. Local and average measurements of convection coefficients are obtained using naphthalene sublimation, and the structure of the vortices is studied using flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement of the channel flow is also investigated. In regions where a vortex induces a surface-normal inflow, the local heat transfer coefficients are found to increase by as much as 300 percent over the baseline flow, depending on vortex strength and location relative to the boundary layer. Vortex strength increases with Reynolds number, wing aspect ratio, and wing attack angle, and the vortex strength decays as the vortex is carried downstream. Considering the complete channel surface, the largest spatially averaged heat average heat transfer enhancement is 55 percent; it is accompanied by a 100 percent increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator.


2021 ◽  
pp. 1-45
Author(s):  
I-Lun Chen ◽  
Izzet Sahin ◽  
Lesley Wright ◽  
Je-Chin Han ◽  
Robert Krewinkel

Abstract The thermal performance of two V-type rib configurations is measured in a rotating, two-pass cooling channel. The coolant travels radially outward in the rectangular first pass (AR = 4:1), and travels radially inward in the second pass (AR = 2:1). Both the passages are oriented 90° to the direction of rotation. The LS and TS of the channel are roughened with V-type ribs. The first V-shaped configuration has a narrow gap at the apex of the V. The configuration is modified by off-setting one leg of the V to create a staggered discrete, V-shaped configuration. The ribs are oriented 45° relative to the streamwise coolant direction. The heat transfer enhancement and frictional losses are measured with varying Reynolds and rotation numbers. The Reynolds number varies from 10,000 to 45,000 in the AR = 4:1 first pass; this corresponds to 16,000 to 73,500 in the AR = 2:1 second pass. The maximum rotation numbers are 0.39 and 0.16 in the first and second passes, respectively. The heat transfer enhancement on both the leading and trailing surfaces of the first pass of the 45° V-shaped channel is slightly reduced with rotation. In the second pass, the heat transfer increases on the leading surface while it decreases on the trailing surface. The 45° staggered, discrete V-shaped ribs provide increased heat transfer and thermal performance compared to the traditional V-shaped and standard, 45° angled rib turbulators.


Author(s):  
A. P. Le ◽  
J. S. Kapat

In the quest for enhancing heat-transfer for the internal cooling channels of advanced turbo-machines, many schemes have been used and developed over the years. One such scheme is the use of rib turbulators. There have been fundamental studies in the past to understand the heat transfer enhancement phenomena caused by flow separation due to the presence of ribs. Typical ribs investigated in laboratory type experiments are square in nature i.e. the height, e, of the rib and the width, w, is the same. Although the literature deals with the effects of various rib shapes, little is known about the effect of having e/w not equal to unity. In this paper we investigate the degree of heat transfer enhancement caused by ribs with e/w not equal to unity. Experiments are carried out in a straight duct with ribs oriented normal to the main flow. The P/e ratio, P being the pitch of the ribs, is kept at a constant value of 10 while the ratio w/P is varied systematically from 0.1 to 0.5. Results are reported for Reynolds numbers ranging from 20,000 to 40,000. The aspect ratio of the channel is varied from 1:4 to 1:8 (Height : Width) and their effect is also shown. For all the cases investigated, pressure drop penalty is also presented.


Author(s):  
H. K. Moon ◽  
T. O’Connell ◽  
R. Sharma

The heat transfer rate from a smooth wall in an internal cooling passage can be significantly enhanced by using a convex patterned surface on the opposite wall of the passage. This design is particularly effective for a design that requires the heat transfer surface to be free of any augmenting features (smooth). Heat transfer coefficients on the smooth wall in a rectangular channel, which had convexities on the opposite wall were experimentally investigated. Friction factors were also measured to assess the thermal performance. Relative clearances (δ/d) between the convexities and the smooth wall of 0, 0.024, and 0.055 were investigated in a Reynolds number (ReHD) range from 15,000 to 35,000. The heat transfer coefficients were measured in the thermally developed region using a transient thermochromic liquid crystal technique. The clearance gap between the convexities and the smooth wall adversely affected the heat transfer enhancement (NuHD). The friction factors (f), measured in the aerodynamically developed region, were largest for the cases of no clearance (δ/d = 0). The average heat transfer enhancement (NuHD) was also largest for the cases of no clearance (δ/d = 0), as high as 3.08 times at a Reynolds number of 11,456 in relative to that (Nuo) of an entirely smooth channel. The normalized Nusselt numbers (NuHD/Nuo), as well as the normalized friction factors (f/fo), for all three cases, decreased with Reynolds numbers. However, the decay rate of the friction factor ratios (f/fo) with Reynolds numbers was lower than that of the normalized Nusselt numbers. For all three cases investigated, the thermal performance ((NuHD/Nuo) /(f/fo)1/3) values were within 5% to each other. The heat transfer enhancement using a convex patterned surface was thermally more effective at a relatively low Reynolds numbers (less than 20,000 for δ/d = 0) than that of a smooth channel.


Author(s):  
Tao Guo ◽  
Huiren Zhu ◽  
Dunchun Xu

The detailed heat transfer distributions are measured for the wall of a channel with rib turbulators and double-row bleed holes by transient liquid crystal technique. The effects of the relative positions of rib turbulators and bleed holes, rib angles, channel Reynolds numbers and bleed ratios on heat transfer character are studied. The bleed holes are located near the upstream ribs, equidistant between ribs and near the downstream ribs. Three different rib angles of 60°, 90° and 120° are selected with the holes equidistant between ribs. The channel Reynolds numbers are changed from 30000 to 120000. The bleed ratios are between 0.09 and 0.22. The results show that angled ribs produces higher heat transfer enhancement in conjunction with the effect of bleed holes. The heat transfer characters are best when the bleed holes are located near the upstream ribs in the channels with 90° ribs. The change of bleed holes locations does not change the position of the flow reattachment, but affect the heat transfer distribution and intensity in the region. The average heat transfer enhancement decreases with the increasing of Reynolds number, and slight increases as the bleed ratio increases.


Sign in / Sign up

Export Citation Format

Share Document